《第1章全等三角形》暑假自学能力达标训练(附答案)2021-2022学年苏科版八年级数学上册(word版含解析)

文档属性

名称 《第1章全等三角形》暑假自学能力达标训练(附答案)2021-2022学年苏科版八年级数学上册(word版含解析)
格式 doc
文件大小 194.0KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2021-07-22 20:22:08

图片预览

文档简介

2021年苏科版八年级数学上册《第1章全等三角形》暑假自学能力达标训练(附答案)
1.已知图中的两个三角形全等,则∠1等于(  )
A.72° B.60° C.50° D.58°
2.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是(  )
A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE
3.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为(  )
A.2 B.2.5 C.3 D.5
4.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是(  )
A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
5.如图所示,∠C=∠D=90°,添加下列条件①AC=AD;②∠ABC=∠ABD; ③∠BAC=∠BAD; ④BC=BD,能判定Rt△ABC与Rt△ABD全等的条件的个数是(  )
A.1 B.2 C.3 D.4
6.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是(  )
A.带①去 B.带②去 C.带③去 D.带①和②去
7.如图为正方形网格,则∠1+∠2+∠3=(  )
A.105° B.120° C.115° D.135°
8.如图,点C、D分别在BO、AO上,AC、BD相交于点E,若CO=DO,则再添加一个条件,仍不能证明△AOC≌△BOD的是(  )
A.∠A=∠B B.AC=BD C.∠ADE=∠BCE D.AD=BC
9.如图,△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不正确的是(  )
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.AC=DC,∠A=∠D D.BC=EC,∠A=∠D
10.如图,△ABC≌△ADE,若∠B=40°,∠E=30°,则∠DAE的度数为(  )
A.70° B.110° C.120° D.130°
11.如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC度数的值为   .
12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有   对全等三角形.
13.如图,在△ABC中,AC=BC,过点A,B分别作过点C的直线的垂线AE,BF.若AE=CF=3,BF=4.5,则EF=   .
14.如图,已知CB⊥AD,AE⊥CD,垂足分别为B,E,AE,BC相交于点F,AB=BC.若AB=8,CF=2,则BD=   .
15.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.
(1)求线段AE的长.(2)求∠DBC的度数.
16.如图,已知AB∥CF,D是AB上一点,DF交AC于点E,若AB=BD+CF,求证:△ADE≌△CFE.
17.如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.
18.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.
19.在Rt△ABC中,∠ACB=90°,BC=5,过点A作AE⊥AB且AB=AE,过点E分别作EF⊥AC,ED⊥BC,分别交AC和BC的延长线与点F、D.
(1)求证:△ABC≌△EAF;
(2)若FC=7,求四边形ABDE的周长.
20.如图,△ABC和△CDE均为等腰三角形,AC=BC,CD=CE,∠ACB=∠DCE,点D在线段AB上(与A,B不重合),连接BE.
(1)证明:△ACD≌△BCE.
(2)若BD=2,BE=6,求AB的长.
21.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.
(1)求证:AE=CD;
(2)若AC=12cm,求BD的长.
22.如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE
(1)求证:△ABE≌△BCD;
(2)判断线段AE与BD的数量关系及位置关系,并说明理由;
(3)若CD=1,试求△AED的面积.
23.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:
(1)PC=   cm.(用t的代数式表示)
(2)当t为何值时,△ABP≌△DCP?
(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.
参考答案
1.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.
∵图中的两个三角形全等,
∴∠1=∠2=58°.
故选:D.
2.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,
∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,
故A、B、C正确;
AD的对应边是AE而非DE,所以D错误.
故选:D.
3.解:∵△ABE≌△ACF,AB=5,
∴AC=AB=5,
∵AE=2,
∴EC=AC﹣AE=5﹣2=3,
故选:C.
4.解:∵AB∥ED,
∵∠B=∠D,
∵CD=BF,CF=FC,
∴BC=DF.
在△ABC和△DEF中
BC=DF,∠B=∠D,AB=DE,
∴△ABC≌△DEF.
故选:C.
5.解:①当AC=AD时,由∠C=∠D=90°,AC=AD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);
②当∠ABC=∠ABD时,由∠C=∠D=90°,∠ABC=∠ABD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);
③当∠BAC=∠BAD时,由∠C=∠D=90°,∠BAC=∠BAD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);
④当BC=BD时,由∠C=∠D=90°,BC=BD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);
故选:D.
6.解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;
B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;
C、带③去,不但保留了原三角形的两个角还保留了其中一条边,符合ASA判定,故C选项正确;
D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.
故选:C.
7.解:∵在△ABC和△AEF中,,
∴△ABC≌△AEF(SAS),
∴∠4=∠3,
∵∠1+∠4=90°,
∴∠1+∠3=90°,
∵AD=MD,∠ADM=90°,
∴∠2=45°,
∴∠1+∠2+∠3=135°,
故选:D.
8.解:A、可利用AAS证明△AOC≌△BOD,故此选项不合题意;
B、不可利用SSA证明△AOC≌△BOD,故此选项符合题意;
C、根据三角形外角的性质可得∠A=∠B,再利用AAS证明△AOC≌△BOD,故此选项不合题意;
D、根据线段的和差关系可得OA=OB,再利用SAS证明△AOC≌△BOD,故此选项不合题意.故选:B.
9.解:∵AB=DE,
∴当BC=EC,∠B=∠E时,满足SAS,可证明△ABC≌△DEC,故A可以;
当BC=EC,AC=DC时,满足SSS,可证明△ABC≌△DEC,故B可以;
当AC=DC,∠A=∠D时,满足SAS,可证明△ABC≌△DEC,故C可以;
当BC=EC,∠A=∠D时,在△ABC中是ASS,在△DEC中是ASS,故不能证明△ABC≌△DEC,故D不可以;
故选:D.
10.解:∵△ABC≌△ADE,
∴∠B=∠D=40°,
∴∠DAE=180°﹣∠D﹣∠E=180°﹣40°﹣30°=110°.
故选:B.
11.解:∵△ABC≌△ADE,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB,
∵∠BAD=130°,
∴∠ABD=∠ADB=25°,
∵AE∥BD,
∴∠DAE=∠ADB,
∴∠DAE=25°,
∴∠BAC=25°,
故答案为:25°.
12.解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,
∴PE=PF,∠1=∠2,
在△AOP与△BOP中,

∴△AOP≌△BOP,
∴AP=BP,
在△EOP与△FOP中,

∴△EOP≌△FOP,
在Rt△AEP与Rt△BFP中,

∴Rt△AEP≌Rt△BFP,
∴图中有3对全等三角形,
故答案为:3.
13.解:∵过点A,B分别作过点C的直线的垂线AE,BF,
∴∠AEC=∠CFB=90°,
在Rt△AEC和Rt△CFB中,,
∴Rt△AEC≌Rt△CFB(HL),
∴EC=BF=4.5,
∴EF=EC+CF=4.5+3=7.5,
故答案为:7.5.
14.证明:∵CB⊥AD,AE⊥CD,
∴∠ABF=∠CBD=∠AED=90°,
∴∠A+∠D=∠C+∠D=90°,
∴∠A=∠C,
在△ABF和△CBD中,,
∴△ABF≌△CBD(ASA),
∴BF=BD,
∵BC=AB=8,BF=BC﹣CF=8﹣2=6,
∴BD=BF=6;
故答案为:6.
15.解:(1)∵△ABC≌△DEB,DE=10,BC=4,
∴AB=DE=10,BE=BC=4,
∴AE=AB﹣BE=6;
(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,
∴∠BAC=∠D=30°,∠DBE=∠C=70°,
∴∠ABC=180°﹣30°﹣70°=80°,
∴∠DBC=∠ABC﹣∠DBE=10°.
16.证明:∵AB=BD+CF,
又∵AB=BD+AD,
∴CF=AD
∵AB∥CF,
∴∠A=∠ACF,∠ADF=∠F
在△ADE与△CFE中

∴△ADE≌△CFE(ASA).
17.证明:如图,在Rt△ACE和Rt△CBF中,

∴Rt△ACE≌Rt△CBF(HL),
∴∠EAC=∠BCF,
∵∠EAC+∠ACE=90°,
∴∠ACE+∠BCF=90°,
∴∠ACB=180°﹣90°=90°.
18.证明:∵过A、C作BD的垂线,垂足分别为E.F,
∴∠E=∠BFC=90°,
∵∠ABC=90°,
∴∠EAB+∠ABE=90°,∠FBC+∠ABE=90°,
∴∠EAB=∠FBC,
在△AEB和△BFC中,

∴△AEB≌△BFC(AAS),
∴AE=BF,BE=CF,
∴EF=BE﹣BF=CF﹣AE,
即EF+AE=CF.
19.(1)证明:∵∠ACB=90°,AE⊥AB,
∴∠1+∠B=∠1+∠2=90°,
∴∠B=∠2,
∵EF⊥AC,
∴∠4=∠5=90°,
∴∠3=∠4,
在△ABC和△EAF中,

∴△ABC≌△EAF(AAS).
(2)解:∵△ABC≌△EAF
∴BC=AF,AC=EF,
∵BC=5,
∴AF=5,
∵FC=7,
∴AC=EF=12,
在Rt△ABC中,AB==13,
∴AE=AB=13,
∵ED⊥BC,
∴∠7=∠6=∠5=90°,
∴四边形EFCD是矩形,
∴CD=EF=12,ED=FC=7,
∴四边形ABDE的周长=AB+BD+DE+EA=13+5+12+7+13=50.
20.证明:(1)∵∠ACB=∠DCE,
∴∠ACD=∠BCE,
在△ACD和△BCE中,,
∴△ACD≌△BCE(SAS);
(2)由(1)知:△ACD≌△BCE,
∴AD=BE=6,
∴AB=AD+BD=6+2=8.
21.(1)证明:∵DB⊥BC,CF⊥AE,
∴∠DCB+∠D=∠DCB+∠AEC=90°.
∴∠D=∠AEC.
又∵∠DBC=∠ECA=90°,
且BC=CA,
在△DBC和△ECA中,

∴△DBC≌△ECA(AAS).
∴AE=CD.
(2)解:∵△CDB≌△AEC,
∴BD=CE,
∵AE是BC边上的中线,
∴BD=EC=BC=AC,且AC=12cm.
∴BD=6cm.
22.(1)证明:∵AB∥CD,
∴∠ABE+∠C=180°,
∵∠C=90°,
∴∠ABE=90°=∠C,
∵E是BC的中点,
∴BC=2BE,
∵BC=2CD,
∴BE=CD,
在△ABE和△BCD中,,
∴△ABE≌△BCD(SAS);
(2)解:AE=BD,AE⊥BD,理由如下:
由(1)得:△ABE≌△BCD,
∴AE=BD,
∵∠BAE=∠CBD,∠ABF+∠CBD=90°,
∴∠ABF+∠BAE=90°,
∴∠AFB=90°,
∴AE⊥BD;
(3)解:∵△ABE≌△BCD,
∴BE=CD=1,
∵AB=BC=2CD=2,
∴CE=BC﹣BE=1,
∴CE=CD,
∴△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积=(1+2)×2﹣×2×1﹣×1×1=.
23.解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,
则PC=(10﹣2t)cm;
故答案为:(10﹣2t);
(2)当△ABP≌△DCP时,
则BP=CP=5,
故2t=5,
解得:t=2.5;
(3)①如图1,当△ABP≌△QCP,则BA=CQ,PB=PC,
∵PB=PC,
∴BP=PC=BC=5,
2t=5,
解得:t=2.5,
BA=CQ=6,
v×2.5=6,
解得:v=2.4(cm/秒).
②如图2,当△ABP≌△PCQ,则BP=CQ,AB=PC.
∵AB=6,
∴PC=6,
∴BP=10﹣6=4,
2t=4,
解得:t=2,
CQ=BP=4,
v×2=4,
解得:v=2;
综上所述:当v=2.4cm/秒或2cm/秒时△ABP与△PQC全等.