湘乡市2021年上期期末质量检测试卷
八年级数学(试题卷)
时量:120分钟分值:120分钟
一、选择题(本题8个小题,每小题3分,满分24分).
1.下列交通标志中,是中心对称图形的是
2.在平面直角坐标系中,位于第二象限的点是
(1,3)
B.(-1,3)
C.(1,-3)
D.(-1,-3)
3.在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为
A.3
B.
C.2
D.6
4.下列条件中,能判定□ABCD是菱形的是
A.AC=BD
B.AB⊥BC
C.AD=BD
D.AC⊥BD
5.已知一次函数的图像经过点、,且,则下列不等式成立的是
A.
B.
C.
D.
6.抛20次硬币,出现“正面朝上”的频率为0.45,则出现“反面朝上”的次数为
A.9
B.
10
C.11
D.
12
7.如图,直角三角形ABC的面积为4,点D是斜边AB的中点,过点D作DE⊥AC于点E,DF⊥BC于点F,则四边形DECF的面积为
A.8
B.4
C.2
D.1
8.已知△ABC的三边a,b,c满足,则△ABC的的面积为
A.
12
B.
6
C.
15
D.10
二、填空题(本题8个小题,每小题3分,满分24分).
9.一辆汽车沿倾斜角为30°的山坡,从山脚行驶到山顶,共走了800米,那么这座山的垂直高度为米.
10.一个多边形的每一个外角都等于45°,这个多边形是边形.
11.若一次函数y=2x+2的图象经过点(3,m),则m=
.
12.如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,
CD为边作□BCDE,则∠E的度数为度.
13.湘潭市教育部门为了了解全市中小学安全教育情况,对某校进行了“防溺水”安全知识的测试.从七年级随机抽取了50名学生的测试成绩(百分制),整理样本数据,得到下表:
根据抽样调查结果,估计该校七年级600名学生中,80分(含80分)以上的学生有____人.
14.点向上平移3个单位,它的像是点.
15.如图,在中,是斜边上的中线,度,则度.
16.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为。
第15题图
第16题图
三、解答题(本大题10小题,共72分,解答需写出必要的步骤和过程).
17.(6分)在矩形ABCD中,对角线相交于点O,已知AB=2,BC=4,求BD
的长.
18.(6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,
线段MN在网格线上.
(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);
(2)将线段B1A1绕点B1逆时针旋转90°得到线段B1A2,画出线段B1A2.
19.(6分)某校八(1)班一次物理测验(卷面满分100分)成绩统计,有20%的优生,优等生的人均分为90分;有10%的不及格,不及格的同学的人均分为50分;其它同学的人均分为80分,求全班这次测验成绩的平均分.
20.(6分)已知:如图,四边形ABCD是菱形,,,E、F分别为垂足,求证:
21.(6分)在平面直角坐标系xOy中,已知一次函数的图象经过点A(0,-4)、B(3,2),和与x轴交于点C.
(1)求这个一次函数的解析式;
(2)求三角形OCB的面积.
22.(6分)为落实视力保护工作,某校组织七年级学生开展了视力保护活动活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力,两次相关数据记录如下:
活动前被测查学生视力数据:
4.0
4.1
4.1
4.2
4.2
4.3
4.3
4.4
4.4
4.4
4.5
4.5
4.6
4.6
4.6
4.7
4.7
4.7
4.7
4.8
4.8
4.8
4.8
4.8
4.9
4.9
4.9
5.0
5.0
5.1
活动后被测查学生视力数据:
4.0
4.2
4.3
4.4
4.4
4.5
4.5
4.6
4.6
4.6
4.7
4.7
4.7
4.7
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.9
4.9
4.9
4.9
4.9
5.0
5.0
5.1
5.1
根据以上信息回答下列问题:
(1)填空:a=,b=,
(2)活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是.
(3)分析活动前后相关数据,从一个方面评价学校开展视力保护活动的效果(如取得了好的效果,简要说明原因;没有效果,也说明理由).
23.(8分)如图,在口ABCD中对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.
(1)求证:△ABE≌△CDF
;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
24.(8分)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.
(1)勾股定理的证明,人们已经找到了400多种方法,请从图1、图2中任选一种方法来证明该定理.(图1、图2均满足证明勾股定理所需的条件)
(2)如图3、图4、图5,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足有
个.(不需要证明)
25.(10分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.
甲书店:所有书籍按标价8折出售;
乙书店:一次购书中购书总额不超过100元的按原价计费,超过100元后的部分打6折.
(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,就甲书店的优惠方式,写出y关于x的函数解析式;(4分)
(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?(6分)
(10分)
问题情境:
如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE'
(点A的对应点为点C).延长AE交CE'于点F,连接DE.
猜想证明:
(1)试判断四边形BE'FE的形状,并说明理由;
(2)如图②,若DA=DE,请猜想线段CF与FE的数量关系并加以证明;
解决问题:
(3)如图①,若AB=15,E'F=9,请直接写出DE的长.
湘乡市2020年上期期末质量检测试卷
八年级数学参考答案
(请先做题校对答案并统一计分标准,再改题)
一、选择题(本题8个小题,每小题3分,满分24分).
DBAD
CCCB
二、填空题(本题8个小题,每小题3分,满分24分).
9.400
10.八
11.8
12.70
13.480
14.(3,-2)
15.70
16.
三、解答题(本大题10小题,共72分,解答需写出必要的步骤和过程).
17.因为AB=2,BC=4
所以………….4分
因为四边形ABCD是矩形
所以BD=AC=………………….6分
18.
(每问3分)
19.设每班有a人,根据题意得…………………2分(说明思路的方向是对的)
………………5分
答略………………6分
20.因为四边形ABCD是菱形
所以AB=BC=CD=DA,………1分
因为,
所以………2分
在和中
所以……………………5分
所以BE=DF
因为BC=CD
所以EC=FC…………………6分(其它方法酌情计分)
21.(1)把点A(0,-4)、B(3,2)代入解析式得
,解得………………2分
所以这个一次函数的解析式是………………3分
(2)由解析式,求得C(2,0)………..4分
所以三角形OCB的面积为.………….6分
22.(1)5,4…………….2分
(2)4.65,4.8……………4分
(3)活动前中位数为4.65,活动后中位数为4.8,说明学生在做完视力保健活动后整体视力情况变好…………6分(其它理由,有一定道理的均酌情计分)………..6分
23.(1)证明:四边形是平行四边形,
,,,,,
点,分别为,的中点,
,,,
在和中,,
;………………4分
(2)解:当时,四边形是矩形;理由如下:
,,
,
是的中点,
,
,
同理:,
,
,
,,
是的中位线,
,
,
四边形是平行四边形,
,
四边形是矩形.…………………8分
(答对计2分)
24.
(1)如选择图1,四个相同的直角三角形的面积和再加上中间小四边形的面积等于大正方形的面积,得到下列式子
所以……………5分
(2)如选择图2,大正方形的面积等于四个相同的直角三角形的面积和再加上中间四边形的面积,得到下列式子
所以
……………6分
(3)0………………8分
25.(1)甲书店应支付金额为:y1=0.8x;……………….4分
(2)当x>100时,若y1=y2,则0.8x=40+0.6x,解得x=200.
∴当x<200时,去甲书店省钱,x=200时,去甲乙两家书店购书应付金额相同金额,
当x>200时,去乙书店省钱.……………………..10分
(答对一种情况,均计2分)
26.(1)四边形BE'FE是正方形.……………….1分
理由:由旋转可知:∠E'=∠AEB=90°,
∠EBE'=90°.……………………3分
又∵∠AEB+∠FEB=180°,∠AEB=90°,∴∠FEB=90°.
∴四边形BE'FE是矩形.
由旋转可知,BE'=BE.
∴四边形BE'FE是正方形.………………4分
(2)
CF=FE'.
证明:如图,过点D作DH⊥AE,垂足为H,
则∠DHA=90°,∠1+∠3=90°.∵DA=DE,∴AH=AE.
∵四边形ABCD是正方形,∴AB=DA,∠DAB=90°.
∴∠1+∠2=90°.∴∠2=∠3.
∵∠AEB=∠DHA=90°,∴△AEB≌△DHA.
∴AH=BE.
由(1)知四边形BE'FE是正方形,
∴BE=E'F.
∴AH=E'F.
由旋转可得CE'
=AE,
∴FE'=CE'.
∴CF=FE'.……………….8分
(3)
3.…………………10分