帮你归纳总结(三十六):椭圆中点弦问题的求解策略
与椭圆的弦的中点有关的问题,我们称之为椭圆的中点弦问题。
解椭圆的中点弦问题的一般方法是:联立直线和椭圆的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若设直线与椭圆的交点(弦的端点)坐标为、,将这两点代入椭圆的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。
本文用这种方法作一些解题的探索。
以定点为中点的弦所在直线的方程
例1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。
解:设直线与椭圆的交点为、
为的中点
又、两点在椭圆上,则,
两式相减得
于是
即,故所求直线的方程为,即。
评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的位置非常重要。(1)若中点在圆锥曲线内,则被点平分的弦一般存在;(2)若中点在圆锥曲线外,则被点平分的弦可能不存在。
过定点的弦和平行弦的中点坐标和中点轨迹
例3、已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点,求点的坐标。
解:设弦端点、,弦的中点,则
,
又 ,
两式相减得
即
,即
点的坐标为。
例4、已知椭圆,求它的斜率为3的弦中点的轨迹方程。
解:设弦端点、,弦的中点,则
,
又 ,
两式相减得
即,即
,即
由,得
点在椭圆内
它的斜率为3的弦中点的轨迹方程为
求与中点弦有关的圆锥曲线的方程
例5、已知中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求椭圆的方程。
解:设椭圆的方程为,则┅┅①
设弦端点、,弦的中点,则
, ,
又,
两式相减得
即
┅┅②
联立①②解得,
所求椭圆的方程是
四、圆锥曲线上两点关于某直线对称问题
例6、已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。
解:设,为椭圆上关于直线的对称两点,为弦的中点,则,
两式相减得,
即
,,
这就是弦中点轨迹方程。
它与直线的交点必须在椭圆内
联立,得 则必须满足,
即,解得
利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。