| 名称 | 2012年高考数学考前15天解题方法突破系列——数形结合思想方法突破 |
|
|
| 格式 | zip | ||
| 文件大小 | 174.7KB | ||
| 资源类型 | 教案 | ||
| 版本资源 | |||
| 科目 | 数学 | ||
| 更新时间 | 2012-05-20 00:00:00 | ||
【注】 本题利用方程的曲线将曲线有交点的几何问题转化为方程有实解的代数问题。一般地,当给出方程的解的情况求参数的范围时可以考虑应用了“判别式法”,其中特别要注意解的范围。另外,“定义法”、“数形结合法”、“转化思想”、“方程思想”等知识都在本题进行了综合运用。
例4. 设a、b是两个实数,A={(x,y)|x=n,y=na+b} (n∈Z),B={(x,y)|x=m,y=3m+15} (m∈Z),C={(x,y)|x+y≤144},讨论是否,使得A∩B≠φ与(a,b)∈C同时成立。
【分析】集合A、B都是不连续的点集,“存在a、b,使得A∩B≠φ”的含意就是“存在a、b使得na+b=3n+15(n∈Z)有解(A∩B时x=n=m)。再抓住主参数a、b,则此问题的几何意义是:动点(a,b)在直线L:nx+y=3n+15上,且直线与圆x+y=144有公共点,但原点到直线L的距离≥12。21世纪教育网
【注】 集合转化为点集(即曲线),而用几何方法进行研究。此题也属探索性问题用数形结合法解,其中还体现了主元思想、方程思想,并体现了对有公共点问题的恰当处理方法。
本题直接运用代数方法进行解答的思路是:[来源:21世纪教育网]
由A∩B≠φ得:na+b=3n+15 ,即b=3n+15-an (①式);
由(a,b)∈C得,a+b≤144 (②式);
把①式代入②式,得关于a的不等式:
(1+n)a-2n(3n+15)a+(3n+15)-144≤0 (③式),
它的判别式△=4n(3n+15)-4(1+n)[(3n+15)-144]=-36(n-3)[来源:21世纪教育网]
因为n是整数,所以n-3≠0,因而△<0,又因为1+n>0,故③式不可能有实数解。
所以不存在a、b,使得A∩B≠φ与(a,b)∈C同时成立
【专题训练】
1. 设命题甲:0
2. 若log2
3. 如果|x|≤,那么函数f(x)=cosx+sinx的最小值是_____。
A. B. - C. -1 D.
4. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。
A.增函数且最小值为-5 B.增函数且最大值为-5
C.减函数且最小值为-5 D.减函数且最大值为-5
5. 设全集I={(x,y)|x,y∈R},集合M={(x,y)| =1},N={(x,y)|y≠x+1},那么等于_____。
A. φ B. {(2,3)} C. (2,3) D. {(x,y)|y=x+1
6. 如果θ是第二象限的角,且满足cos-sin=,那么是_____。
A.第一象限角 B.第三象限角 C.可能第一象限角,也可能第三象限角 D.第二象限角
7. 已知集合E={θ|cosθ
8. 若复数z的辐角为,实部为-2,则z=_____。
A. -2-2i B. -2+2i
C. -2+2i D. -2-2i
9. 如果实数x、y满足等式(x-2)+y=3,那么的最大值是_____。
A. B. C. D.
10.满足方程|z+3-i|=的辐角主值最小的复数z是_____。
【简解】1小题:将不等式解集用数轴表示,可以看出,甲=>乙,选A;
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网