2021年北师大版九年级数学上册《第2章一元二次方程》同步培优提升测评(附答案)
一.选择题(共10小题,每小题3分,共30分)
1.下列方程中,一元二次方程共有( )个.①x2﹣2x﹣1=0;②ax2+bx+c=0;
③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.
A.1 B.2 C.3 D.4
2.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是( )
A.x1=1,x2=3 B.x1=1,x2=﹣3
C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
3.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是( )
A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3
C.x1,x2在﹣1和3之间 D.x1,x2都小于3
4.一元二次方程y2﹣y﹣=0配方后可化为( )
A.(y+)2=1 B.(y﹣)2=1 C.(y+)2= D.(y﹣)2=
5.如果x2﹣x﹣1=(x+1)0,那么x的值为( )
A.2或﹣1 B.0或1 C.2 D.﹣1
6.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是( )
A.7 B.﹣1 C.7或﹣1 D.﹣5或3
7.已知a=m﹣1,b=m2﹣m(m为任意实数),则a与b的大小关系为( )
A.a>b B.a<b C.a=b D.不能确定
8.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是( )
A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570
C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570
9.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )
A. B.
C. D.
10.有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是( )
A.14 B.11 C.10 D.9
二.填空题(共10小题,每小题3分,共30分)
11.若(m﹣1)xm(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是 .
12.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,则m的值为 .
13.已知关于x的方程m(x+a)2+n=0的解是x1=﹣3,x2=1,则关于x的方程m(x+a﹣2)2+n=0的解是 .
14.等腰三角形的两边恰为方程x2﹣7x+10=0的根,则此等腰三角形的周长为 .
15.若m是方程x2﹣2x﹣1=0的解,则代数式2m2﹣4m+2021的值为 .
16.据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程 .
17.若关于x的一元二次方程2x2﹣3x+m=0的一个实数根是x=3,则m的值为 .
18.关于x的方程x2﹣2mx+m2﹣m=0有两个实数根α,β,且=1,则m= .
19.若一元二次方程(m﹣1)x2+4x+3=0有两个实数根,则m的取值范围是 .
20.已知α、β是一元二次方程x2﹣2021x+2020=0的两实根,则代数式(α﹣2021)(β﹣2021)= .
三.解答题(共7小题,21题6分,22、23、24每小题8分,25、26、27每小题10分,共30分)
21.用适当的方法解下列方程:
(1)x2﹣2x﹣3=0;
(2)(2x﹣1)2﹣2x+1=0.
22.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.
23.已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k的值.
24.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求证:无论p取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1,x2,且满足x12+x22=3x1x2,求实数p的值.
25.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
26.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.
假设该公司2、3、4月每个月生产成本的下降率都相同.
(1)求每个月生产成本的下降率;
(2)请你预测4月份该公司的生产成本.
27.已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?
(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于5cm?
(3)在(1)中,△PQB的面积能否等于8cm2?说明理由.
参考答案
一.选择题(共10小题,每小题3分,共30分)
1.解:①x2﹣2x﹣1=0,符合一元二次方程的定义;
②ax2+bx+c=0,没有二次项系数不为0这个条件,不符合一元二次方程的定义;
③+3x﹣5=0不是整式方程,不符合一元二次方程的定义;
④﹣x2=0,符合一元二次方程的定义;
⑤(x﹣1)2+y2=2,方程含有两个未知数,不符合一元二次方程的定义;
⑥(x﹣1)(x﹣3)=x2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义.
一元二次方程共有2个.
故选:B.
2.解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,
所以2x+3=1或2x+3=﹣3,
所以x1=﹣1,x2=﹣3.
故选:D.
3.解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,
∴(x﹣1)2=5,
∴x﹣1=±,
∴x2=1+>3,x1=1﹣<﹣1,
故选:A.
4.解:y2﹣y﹣=0
y2﹣y=
y2﹣y+=1
(y﹣)2=1
故选:B.
5.解:∵x2﹣x﹣1=(x+1)0,
∴x2﹣x﹣1=1,
即(x﹣2)(x+1)=0,
解得:x1=2,x2=﹣1,
当x=﹣1时,x+1=0,故x≠﹣1,
故选:C.
6.解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,
∴(x2﹣x+2)(x2﹣x﹣6)=0,
∴x2﹣x+2=0或x2﹣x﹣6=0,
∴x2﹣x=﹣2或x2﹣x=6.
当x2﹣x=﹣2时,x2﹣x+2=0,
∵b2﹣4ac=1﹣4×1×2=﹣7<0,
∴此方程无实数解.
当x2﹣x=6时,x2﹣x+1=7
故选:A.
7.解:∵a=m﹣1,b=m2﹣m(m为任意实数),
∴b﹣a=m2﹣m﹣m+1=m2﹣m+1=(m﹣)2+>0,
则a<b,
故选:B.
8.解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,
故选:A.
9.解:∵x2﹣2x+kb+1=0有两个不相等的实数根,
∴△=4﹣4(kb+1)>0,
解得kb<0,
A.k>0,b=0,即kb=0,故A不正确;
B.k>0,b<0,即kb<0,故B正确;
C.k>0,b>0,即kb>0,故C不正确;
D.k<0,b<0,即kb>0,故D不正确.
故选:B.
10.解:设每轮传染中平均一个人传染了x个人,依题意得1+x+x(1+x)=144,
即(1+x)2=144,
解方程得x1=11,x2=﹣13(舍去),
故选:B.
二.填空题(共10小题,每小题3分,共30分)
11.解:由题意,得
m(m+2)﹣1=2且m﹣1≠0,
解得m=﹣3,
故答案为:﹣3.
12.解:依题意,当x=0时,原方程为m2+3m﹣4=0,
解得m1=﹣4,m2=1,
∵二次项系数m﹣1≠0,即x≠1,
∴m=﹣4.
故本题答案为:﹣4.
13.解:∵关于x的方程m(x+a)2+n=0的解是x1=﹣3,x2=1,
∴方程m(x+a﹣2)2+n=0可变形为m[(x﹣2)+a]2+n=0,
∵此方程中x﹣2=﹣3或x﹣2=1,
解得x1=﹣1或x2=3.
故答案为:x1=﹣1,x2=3.
14.解:∵x2﹣7x+10=0,
∴(x﹣2)(x﹣5)=0,
∴(x﹣2)=0或(x﹣5)=0,
∴x1=2,x2=5,
∵等腰三角形的两边恰为方程x2﹣7x+10=0的根,且2+2<5,
∴该三角形的三边分别为2,2,2,或2,5,5,或5,5,5.
∴此等腰三角形的周长为:2+2+2=6,或2+5+5=12,或5+5+5=15.
故答案为:6或12或15.
15.解:∵m是方程x2﹣2x﹣1=0的解,
∴m2﹣2m﹣1=0,
∴m2﹣2m=1,
∴2m2﹣4m+2021=2(m2﹣2m)+2021=2×1+2021=2023.
故答案为:2023.
16.解:设该市第二、三季度地区生产总值平均增长率为x,
依题意得:652(1+x)2=960.
故答案为:652(1+x)2=960.
17.解:∵关于x的一元二次方程2x2﹣3x+m=0的一个实数根是x=3,
∴2×32﹣3×3+m=0,
解得:m=﹣9,
故答案为:﹣9.
18.解:∵关于x的方程x2﹣2mx+m2﹣m=0有两个实数根α,β,
∴△=(﹣2m)2﹣4(m2﹣m)≥0,解得m≥0,
α+β=2m,αβ=m2﹣m,
∵=1,即=1,
∴=1,
解得m1=0,m2=3,
经检验,m1=0不合题意,m2=3符合题意,
∴m=3.
故答案为:3.
19.解:根据题意得m﹣1≠0且Δ=42﹣4(m﹣1)×3>0,
解得m<且m≠1.
故答案为m<且m≠1.
20.解:∵α、β是一元二次方程x2﹣2021x+2020=0的两实根,
∴α+β=2021,αβ=2020,
∴(α﹣2021)(β﹣2021)=αβ﹣2021(α+β)+20212
=2020﹣2021×2021+20212
=2020.
故答案为:2020.
三.解答题(共7小题(共7小题,21题6分,22、23、24每小题8分,25、26、27每小题10分,共30分))
21.解:(1)∵x2﹣2x﹣3=0,
∴(x﹣3)(x+1)=0,
则x﹣3=0或x+1=0,
解得x1=3,x2=﹣1.
(2)∵(2x﹣1)2﹣2x+1=0,
∴2(2x﹣1)(x﹣1)=0,
则2x﹣1=0或x﹣1=0,
解得x1=,x2=1.
22.解:(1)∵方程有两个实数根x1,x2,
∴△=(2k﹣2)2﹣4k2≥0,
解得k≤;
(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,
∵k≤,
∴2k﹣2<0,
又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.
解得k=4(不合题意,舍去)或k=﹣6,
∴k=﹣6.
23.(1)证明:∵△=(2k+1)2﹣4(k2+k)=1>0,
∴方程有两个不相等的实数根;
(2)解:一元二次方程x2﹣(2k+1)x+k2+k=0的解为x=,即x1=k,x2=k+1,
∵k<k+1,
∴AB≠AC.
当AB=k,AC=k+1,且AB=BC时,△ABC是等腰三角形,则k=5;
当AB=k,AC=k+1,且AC=BC时,△ABC是等腰三角形,则k+1=5,解得k=4,
综合上述,k的值为5或4.
24.证明:(1)(x﹣3)(x﹣2)﹣p2=0,
x2﹣5x+6﹣p2=0,
△=(﹣5)2﹣4×1×(6﹣p2)=25﹣24+4p2=1+4p2,
∵无论p取何值时,总有4p2≥0,
∴1+4p2>0,
∴无论p取何值时,方程总有两个不相等的实数根;
(2)x1+x2=5,x1x2=6﹣p2,
∵x12+x22=3x1x2,
∴(x1+x2)2﹣2x1x2=3x1x2,
∴52=5(6﹣p2),
∴p=±1.
25.解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=(100+200x)(斤);
,(2)根据题意得:(4﹣2﹣x)(100+200x)=300,
解得:x=或x=1,
当x=时,销售量是100+200×=200<260;
当x=1时,销售量是100+200=300(斤).
∵每天至少售出260斤,
∴x=1.
答:张阿姨需将每斤的售价降低1元.
26.解:(1)设每个月生产成本的下降率为x,
根据题意得:400(1﹣x)2=361,
解得:x1=0.05=5%,x2=1.95(不合题意,舍去).
答:每个月生产成本的下降率为5%.
(2)361×(1﹣5%)=342.95(万元).
答:预测4月份该公司的生产成本为342.95万元.
27.解:(1)设 经过x秒以后△PBQ面积为6
×(5﹣x)×2x=6
整理得:x2﹣5x+6=0
解得:x=2或x=3
答:2或3秒后△PBQ的面积等于6cm2
(2)当PQ=5时,在Rt△PBQ中,∵BP2+BQ2=PQ2,
∴(5﹣t)2+(2t)2=52,
5t2﹣10t=0,
t(5t﹣10)=0,
t1=0(舍弃),t2=2,
∴当t=2时,PQ的长度等于5cm.
(3)设经过x秒以后△PBQ面积为8,
×(5﹣x)×2x=8
整理得:x2﹣5x+8=0
△=25﹣32=﹣7<0
∴△PQB的面积不能等于8cm2.