1.2.2
数轴
一、单选题
1.下列结论正确的有(
)
①规定了原点,正方向和单位长度的直线叫数轴;②最小的整数是0;③正数、负数和零称有理数;④数轴上的点都表示有理数.
A.1个
B.2个
C.3个
D.4个
2.下列数轴表示正确的是(
)
A.
B.
C.
D.
3.下列各语句中,错误的是(
)
A.数轴上,原点位置的确定是任意的
B.数轴上,正方向是从原点向右
C.数轴上,单位长度1的长度的确定,可根据需要任意选取
D.数轴上,与原点的距离等于36.8的点有两个
4.如图,数轴上被墨水遮盖的数可能是(
)
A.
B.
C.
D.
5.若数轴上的点A对应的数是-2,那么与A相距3个单位长度的点B对应的数是(
).
A.1
B.-5
C.-5或1
D.-1或5
6.小调皮写作业时,将两滴墨水滴在一条数轴上如图所示,根据图中标出的数值可判定墨迹盖住的整数共( )个.
A.78
B.79
C.80
D.81
7.数轴上与原点距离4个单位长度的点所表示的有理数是( )
A.4
B.﹣4
C.±4
D.无法确定
8.下列说法中,错误的是( )
A.所有的有理数都可以用数轴上的点表示
B.数轴上的原点表示0
C.在数轴上表示的点与表示的点的距离是
D.数轴上表示的点在原点左边3个单位
9.一只蚂蚁沿数轴从点向右爬个单位长度到达点,点表示的数是,则点所表示的数是(
)
A.
B.
C.
D.
10.已知点A,B在数轴上表示的数分别为-1,5,则线段的长为(
)
A.1
B.4
C.5
D.6
11.如图,数轴上两点、到原点的距离相等,则点表示的数为(
)
A.
B.
C.
D.
12.点在数轴上距离原点3个单位长度,将向右移动4个单位长度,再向左移动2个单位长度,此点表示的数是(
)
A.1
B.5
C.或1
D.5或
二、填空题
13.在数轴上与表示-3的数相距2个单位长度的点对应的数是_________.
14.在数轴上表示与的两个点之间的距离是__________________.
15.在数轴上,表示-2
的点与原点的距离是___个单位长度.
16.数轴上有一点到原点的距离是5,那么这个点表示的数是______.
17.在数轴上把表示-3的对应点沿数轴移动5个单位后,所得的对应点表示的数是______.
18.在数轴上距原点2020个单位长度的点表示的数是______________.
三、解答题
19.画出数轴并把下列各数标在数轴上:-3,,-1.5,0.
20.操作探究:已知在纸面上有一数轴(如图所示).
操作一:
折叠纸面,使1表示的点与表示的点重合,则表示的点与__________表示的点重合;
操作二:
(2)折叠纸面,使表示的点与3表示的点重合,5表示的点与数__________表示的点重合.
参考答案
1.A
解:规定了原点,正方向和单位长度的直线叫数轴是对的.
是错的,负整数比0还小.
是错的,有理数可以分为正有理数、负有理数和零;
是错的,数轴上有的点表示的不是有理数.
故选A.
2.D
解:A、不符合数轴右边的数总比左边的数大的特点,故表示错误;
B、不符合数轴右边的数总比左边的数大的特点,故表示错误;
C、没有原点,故表示错误;
D、符合数轴的定定义,故表示正确;
故选D.
3.B
解:A.
数轴上,原点位置的确定是任意的,正确,不符合题意;
B.
数轴上,正方向可以是从原点向右,也可以是从原点向左,错误,符合题意;
C.
数轴上,单位长度1的长度的确定,可根据需要任意选取,正确,不符合题意;
D.
数轴上,与原点的距离等于36.8的点有两个,正确,不符合题意;
故选B.
4.C
解:由数轴上墨迹的位置可知,该数大于-3,且小于-1,
因此备选项中,只有选项C符合题意,
故选:C.
5.C
解:如图:
在点A左侧距离3个单位长度的点是-5,在点A右侧距离3个单位长度的点是1.
故选:C.
6.C
解:根据数轴的特点,-27.3到24.2之间的整数有-27、-26、-25、…、21、22、23、24共52个,
50.4到78.9之间的整数有51、52、53、…、76、77、78共28个,
所以被墨迹盖住的整数有52+28=80个.
故选:C.
7.C
解:设在数轴上距离原点两个单位长度的点表示的数是x,则
|x|=4,
解得x=±4.
故选:C.
8.C
解:A.
所有的有理数都可以用数轴上的点表示,正确;
B.
数轴上的原点表示0,正确;
C.
在数轴上表示的点与表示的点的距离是2,错误;
D.
数轴上表示的点在原点左边3个单位,正确;
故选C.
9.D
解:由题意可得:点所表示的数是7.
故选:D.
10.D
解:∵点A,B在数轴上表示的数分别为-1,5,
∴AB=6
故选:D.
11.C
解:∵点A和点B到原点距离相等,
则两数互为相反数,
又点A表示2,
∴点B表示-2,
故选C.
12.D
解:将点A向右移动4个单位长度,再向左移动2个单位长度,实际是点A只向右移动了2个单位长度,
∵点A在数轴上距原点3个单位长度,
∴点A表示的数为或;
向右移动了2个单位长度,则点A表示的数为或.
故选:D.
13.-5或-1.
解:根据题意画出数轴,
得到在数轴上与数-3所对应的点相距2个单位长度的点表示的数为-5或-1
故答案为:-5或-1.
14.
解:数轴上表示与的两个点之间的距离是7,
故答案为:7.
15.2
数轴上表示的点与原点的距离是2,
故答案为:2.
16.±5
解:∵数轴上有一点到原点的距离是5,
∴该点表示为±5.
故答案为:±5.
17.-8或2
解:依题意得:
左移:8,
右移:2.
故答案为:8或2.
18.2020或-2020
解:在数轴上距原点2020个单位长度的点表示的数是:2020或-2020,
故答案为:2020或-2020.
19.见解析
解:数轴如图:
.
20.(1)3;(2)-3
解:(1)∵1与-1重合,
∴折痕点为原点,
∴-3表示的点与3表示的点重合.
故答案为:3;
(2)∵由表示-1的点与表示3的点重合,
∴折痕点是表示1的点,
∴5表示的点与数-3表示的点重合.
故答案为:-3.