2021年北师大版八年级数学上册《2.2平方根》同步优生辅导提升训练(附答案)
一.选择题(共9小题)
1.=( )
A.﹣4 B.2 C.4 D.8
2.下列各式中正确的是( )
A.=±4 B.=4 C.=﹣4 D.=7
3.4的平方根是( )
A.±16 B.2 C.﹣2 D.±2
4.的平方根是( )
A.9 B.±9 C.3 D.±3
5.若+(b﹣3)2=0,则ab=( )
A. B. C.8 D.
6.下列各数中算术平方根等于它本身的是( )
A.1 B.4 C.9 D.16
7.实数的平方根( )
A.3 B.﹣3 C.±3 D.±
8.“的平方根是±”用数学式表示为( )
A.=± B.= C.±=± D.﹣=﹣
9.已知三角形三边为a、b、c,其中a、b两边满足+|b﹣8|=0,那么这个三角形的最长边c的取值范围是( )
A.c>8 B.8<c<14 C.6<c<8 D.2<c<14
二.填空题(共4小题)
10.已知a=2,则化简的结果是 .
11.若一正数a的两个平方根分别是2m﹣3和5﹣m,则a= .
12.如果是一个整数,那么最小正整数a的值为 .
13.下列各数:81,,1.44,2,的平方根分别是 , , , , ,算术平方根分别是 , , , , .
三.解答题(共7小题)
14.求下列各数的平方根:
(1)121; (2)2; (3)(﹣13)2; (4).
15.求下列各式的值:
(1);
(2);
(3).
16.计算:
(1); (2); (3); (4).
17.求下列x的值
(1)5x2﹣4=11;
(2)(x﹣1)2=9.
18.已知+(3y﹣1)2=0,求的平方根.
19.如图大正方形的面积为a2cm2(a>0),小正方形的面积为b2cm2(b>0),求阴影部分的面积.
20.观察:=2,
=3,
=4,…
(1)等于什么?
(2)写出第八个等式;
(3)写出符合这一规律的一般等式(用字母n表示,n为自然数,且n≥2).
参考答案
一.选择题(共9小题)
1.解:=4,
故选:C.
2.解:A.,因此选项A不正确;
B.,因此选项B不正确;
C.,因此选项C不正确;
D.,因此选项D正确;
故选:D.
3.解:4的平方根是±2,
故选:D.
4.解:∵=9,
∴的平方根是±3,
故选:D.
5.解:由题意得,2a+1=0,b﹣3=0,
解得,a=﹣,b=3,
则ab=﹣,
故选:B.
6.解:1算术平方根是1,
4算术平方根是2,
9算术平方根是3,
16算术平方根是4.
所以算术平方根等于它本身的是1.
故选:A.
7.解:∵=3,
∴3的平方根是,
故选:D.
8.解:“的平方根是±”用数学式表示为±=±.
故选:C.
9.解:+|b﹣8|=0,
a2﹣12a+36=0,b﹣8=0,
a=6,b=8,
b﹣a<c<a+b,
这个三角形的最长边c,
c>b=8,
8<c<14,
故选:B.
二.填空题(共4小题)
10.解:∵a=2,
∴原式===3.
故答案为:3.
11.解:一正数a的两个平方根分别是2m﹣3和5﹣m,
(2m﹣3)+(5﹣m)=0,
m=﹣2,
2m﹣3=﹣7
(﹣7)2=49,
故答案为:49.
12.解:∵=10,
当a=0,2,8…时,都可以开方,
∵2是最小正整数,
∴a=2时,被开方数开得尽,结果为整数,故a=2.
13.解:∵(±9)2=81,
∴81的平方根是±9;
∵(±)2=,
∴的平方根是±;
∵(±1.2)2=1.44,
∴1.44的平方根是±1.2;
∵(±)2=,
∴的平方根是±;
∵=9,
∴9的平方根是±3.
故答案为:±9;±;±1.2;±;±3.
三.解答题(共7小题)
14.解:(1);
(2);
(3);
(4)∵,
∴的平方根是.
15.解:(1)=0.9;
(2)=56;
3)==.
16.解:(1)=6;
(2)=±15;
(3)=﹣0.4;
(4)==.
17.解:(1)5x2=15,
x2=3,
x=;
(2)x﹣1=±3,
x=4或x=﹣2.
18.解:根据题意得,x﹣=0,3y﹣1=0,
解得x=,y=,
∴=,
所以,的平方根是.
19.解:大正方形的边长为=a,小正方形的边长为=b,
所以阴影部分的面积=a(b﹣a)=ab﹣a2.
20.解:(1);
(2);
(3)(n≥2).