2021年苏科版八年级数学上册《第1章全等三角形》自主学习培优提升训练(附答案)
1.如图为正方形网格,则∠1+∠2+∠3=( )
A.105° B.120° C.115° D.135°
2.已知图中的两个三角形全等,则∠α的度数是( )
A.72° B.60° C.58° D.50°
3.下列说法:
①全等三角形的形状相同、大小相等
②全等三角形的对应边相等、对应角相等
③面积相等的两个三角形全等
④全等三角形的周长相等
其中正确的说法为( )
A.①②③④ B.①②③ C.②③④ D.①②④
4.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是( )
A.6cm B.5cm C.7cm D.无法确定
5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去 B.带②去 C.带③去 D.带①和②去
6.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )
A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE
7.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为( )
A.2 B.2.5 C.3 D.5
8.如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为( )
A.α=β B.α=2β C.α+β=90° D.α+2β=180°
9.如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有( )
①∠1=∠2;②BE=CF;③△ACN≌△ABM;
④CD=DN;⑤△AFN≌△AEM.
A.2个 B.3个
C.4个 D.5个
10.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为( )
A.(﹣,1) B.(﹣1,) C.(,1) D.(﹣,﹣1)
11.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为( )
A.1 B.2 C.5 D.无法确定
12.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是 .
13.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为 .
14.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标 .
15.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C= 度.
16.如图,A、C、N三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,则∠BCM:∠BCN= .
17.如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC度数的值为 .
18.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 对全等三角形.
19.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是 .(填序号)
20.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .
21.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,
(1)当DE=8,BC=5时,线段AE的长为 ;
(2)已知∠D=35°,∠C=60°,
①求∠DBC的度数; ②求∠AFD的度数.
如图,AC=AE,∠C=∠E,∠1=∠2.
求证:△ABC≌△ADE.
23.如图,D、E在△ABC的边AB上,且∠ADC=∠ACB.
求证:(1)∠ACD=∠ABC;
(2)若∠BAC的平分线AF交CD于F,BE+AC=AB,求证:EF∥BC.
24.如图,BE⊥AE,CF⊥AE,垂足分别为E、F,D是EF的中点,CF=AF.
(1)请说明CD=BD;
(2)若BE=6,DE=3,请直接写出△ACD的面积.
25.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.
求证:(1)AF=CE;
(2)AB∥CD.
26.已知:如图,在△ABC中,∠C=90°,点E在AC上,且AE=BC,ED⊥AB于点D,过A点作AC的垂线,交ED的延长线于点F.
求证:AB=EF.
27.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;
(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.
28.(1)如图1,直线m经过等腰直角△ABC的顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别为D、E,求证:BD+CE=DE;
(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点 D,E,使∠ADB=∠AEC=α,补充∠BAC= (用α表示),线段BD,CE与DE之间满足BD+CE=DE,补充条件后并证明;
(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB=∠AEC= (用α表示).通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.
29.【问题背景】
在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.
【初步探索】
小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到BE、EF、FD之间的数量关系是 .
【探索延伸】
在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否仍然成立?说明理由.
【结论运用】
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.
参考答案
1.解:∵在△ABC和△AEF中,,
∴△ABC≌△AEF(SAS),
∴∠4=∠3,
∵∠1+∠4=90°,
∴∠1+∠3=90°,
∵AD=MD,∠ADM=90°,
∴∠2=45°,
∴∠1+∠2+∠3=135°,
故选:D.
2.解:∵图中的两个三角形全等
a与a,c与c分别是对应边,那么它们的夹角就是对应角
∴∠α=50°
故选:D.
3.解:①全等三角形的形状相同、大小相等,说法正确;
②全等三角形的对应边相等、对应角相等,说法正确;
③面积相等的两个三角形全等,说法错误;
④全等三角形的周长相等,说法正确;
故选:D.
4.解:∵△ABC≌△ADE,
∴DE=BC,
∵BC=7cm,
∴DE=7cm.
故选:C.
5.解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;
B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;
C、带③去,不但保留了原三角形的两个角还保留了其中一条边,符合ASA判定,故C选项正确;
D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.
故选:C.
6.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,
∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,
故A、B、C正确;
AD的对应边是AE而非DE,所以D错误.
故选:D.
7.解:∵△ABE≌△ACF,AB=5,
∴AC=AB=5,
∵AE=2,
∴EC=AC﹣AE=5﹣2=3,
故选:C.
8.解:∵△AOB≌△ADC,
∴AB=AC,∠BAO=∠CAD,
∴∠BAC=∠OAD=α,
在△ABC中,∠ABC=(180°﹣α),
∵BC∥OA,
∴∠OBC=180°﹣∠O=180°﹣90°=90°,
∴β+(180°﹣α)=90°,
整理得,α=2β.
故选:B.
9.解:∵∠E=∠F=90°,∠B=∠C,AE=AF,
∴△ABE≌△ACF(AAS),
∴BE=CF,AF=AE,故②正确,
∠BAE=∠CAF,
∠BAE﹣∠BAC=∠CAF﹣∠BAC,
∴∠1=∠2,故①正确,
∵△ABE≌△ACF,
∴AB=AC,
又∠BAC=∠CAB,∠B=∠C
△ACN≌△ABM(ASA),故③正确,
CD=DN不能证明成立,故④错误
∵∠1=∠2,∠F=∠E,AF=AE,
∴△AFN≌△AEM(ASA),故⑤正确,
故选:C.
10.解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,
∵四边形OABC是正方形,
∴OA=OC,∠AOC=90°,
∴∠COE+∠AOD=90°,
又∵∠OAD+∠AOD=90°,
∴∠OAD=∠COE,
在△AOD和△OCE中,
,
∴△AOD≌△OCE(AAS),
∴OE=AD=,CE=OD=1,
∵点C在第二象限,
∴点C的坐标为(﹣,1).
故选:A.
11.解:过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,
∵∠EDF+∠FDC=90°,
∠GDC+∠FDC=90°,
∴∠EDF=∠GDC,
于是在Rt△EDF和Rt△CDG中,
,
∴△DEF≌△DCG,
∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,
所以,S△ADE=(AD×EF)÷2=(2×1)÷2=1.
故选:A.
12.解:∵四边形ABCD≌四边形A'B'C'D',
∴∠D=∠D′=130°,
∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,
故答案为:95°.
13.解:由平移的性质知,BE=6,DE=AB=10,
∴OE=DE﹣DO=10﹣4=6,
∴S四边形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=48.
故答案为48.
14.解:如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,
点E的坐标是:(1,5),(1,﹣1),(5,﹣1),
故答案为:(1,5)或(1,﹣1)或(5,﹣1).
15.解:∵△ADB≌△EDB≌△EDC,
∴∠ADB=∠EDB=∠EDC,∠DEC=∠DEB∠=A,
又∵∠ADB+∠EDB+∠EDC=180°,∠DEB+∠DEC=180°
∴∠EDC=60°,∠DEC=90°,
在△DEC中,∠EDC=60°,∠DEC=90°
∴∠C=30°.
故答案为:30.
16.解:∵∠A:∠ABC:∠ACB=3:5:10,∠A+∠ABC+∠ACB=180°,
∴∠A=30°,∠ABC=50°,∠ACB=100°,
∵△MNC≌△ABC,
∴∠N=∠ABC=50°,∠M=∠A=30°,
∴∠MCA=∠M+∠N=80°,
∴∠BCM=20°,∠BCN=80°,
∴∠BCM:∠BCN=1:4,
故答案为:1:4.
17.解:∵△ABC≌△ADE,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB,
∵∠BAD=130°,
∴∠ABD=∠ADB=25°,
∵AE∥BD,
∴∠DAE=∠ADB,
∴∠DAE=25°,
∴∠BAC=25°,
故答案为:25°.
18.解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,
∴PE=PF,∠1=∠2,
在△AOP与△BOP中,
,
∴△AOP≌△BOP,
∴AP=BP,
在△EOP与△FOP中,
,
∴△EOP≌△FOP,
在Rt△AEP与Rt△BFP中,
,
∴Rt△AEP≌Rt△BFP,
∴图中有3对全等三角形,
故答案为:3.
19.解:因为∠ABC=∠DCB,BC=CB,
①AB=CD,根据SAS可以判定△ABC≌△DCB.
②AC=DB,无法判断△ABC≌△DCB.
③∠A=∠D,根据AAS可以判定△ABC≌△DCB.
④∠ACB=∠DBC,根据ASA可以判定△ABC≌△DCB.
故答案为:①③④.
20.解:∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠1=∠EAC,
在△BAD和△CAE中,
∴△BAD≌△CAE(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
故答案为:55°.
21.解:(1)∵△ABC≌△DEB,DE=8,BC=5,
∴AB=DE=8,BE=BC=5,
∴AE=AB﹣BE=8﹣5=3,
故答案为:3;
(2)①∵△ABC≌△DEB
∴∠A=∠D=35°,∠DBE=∠C=60°,
∵∠A+∠ABC+∠C=180°,
∴∠ABC=180°﹣∠A﹣∠C=85°,
∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;
②∵∠AEF是△DBE的外角,
∴∠AEF=∠D+∠DBE=35°+60°=95°,
∵∠AFD是△AEF的外角,
∴∠AFD=∠A+∠AEF=35°+95°=130°.
22.证明:∵∠1=∠2,
∴∠1+∠EAC=∠2+∠EAC,
∴∠BAC=∠DAE,
在△ABC和△ADE中
∴△ABC≌△ADE(ASA).
23.证明:(1)∵∠ACB=∠ADC,
∴∠ACD+∠BCD=∠ABC+∠BCD,
∴∠ACD=∠ABC;
(2)∵AB=BE+AE=BE+AC,
∴AE=AC,
∵AF平分∠BAC,
∴∠EAF=∠CAF,
在△ACF和△AEF中,
,
∴△ACF≌△AEF(SAS),
∴∠ACF=∠AEF,
∴∠AEF=∠ABC,
∴EF∥BC.
24.解:(1)∵BE⊥AE,CF⊥AE,
∴∠BED=∠CFD,
∵D是EF的中点,
∴ED=FD,
在△BED与△CFD中,
,
∴△BED≌△CFD(ASA),
∴CD=BD;
(2)由(1)得:CF=EB=6,
∵AF=CF,
∴AF=6,
∵D是EF的中点,
∴DF=DE=3,
∴AD=9,
∴△ACD的面积:AD?CF=×9×6=27.
25.证明:(1)∵DE⊥AC,BF⊥AC,
在△ABF和△CDE中,,
∴△ABF≌△CDE(HL).
∴AF=CE.
(2)由(1)知∠ACD=∠CAB,
∴AB∥CD.
26.证明:∵ED⊥AB,
∴∠ADE=∠ACB=90°;
∴∠DAE+∠DEA=∠DAE+∠B=90°,
即∠DEA=∠B;
∵AD⊥EF,FA⊥AC,
∴∠FAE=∠C=90°,
在△AFE和△CAB中
∵,
∴△AFE≌△CAB(ASA).
∴AB=EF.
27.解:(1)△ACP≌△BPQ,PC⊥PQ.
理由如下:∵AC⊥AB,BD⊥AB,
∴∠A=∠B=90°,
∵AP=BQ=2,
∴BP=5,
∴BP=AC,
在△ACP和△BPQ中
,
∴△ACP≌△BPQ(SAS);
∴∠C=∠BPQ,
∵∠C+∠APC=90°,
∴∠APC+∠BPQ=90°,
∴∠CPQ=90°,
∴PC⊥PQ;
(2)①若△ACP≌△BPQ,
则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt
解得:x=2,t=1;
②若△ACP≌△BQP,
则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t
解得:x=,t=.
综上所述,当△ACP与△BPQ全等时x的值为2或.
28.解:(1)∵BD⊥m,CE⊥m,
∴∠DAB+∠ABD=90°,∠ADB=∠AEC,
∵∠BAC=90°,
∴∠DAB+∠EAC=90°,
∴∠ABD=∠EAC,
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴BD=AE,AD=CE,
∴BD+CE=AD+AE=DE;
(2)补充∠BAC=α,理由如下:
∵∠ADB=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴BD+CE=AE+AD=DE;
(3)补充∠ADB=∠AEC=180°﹣α,理由如下:
∵∠ADB=180°﹣α,
∴∠ABD+∠BAD=α,
∵∠BAD+∠CAE=α,
∴∠ABD=∠CAE,
在△ABD和△CAE中,
,
∴△ABD≌△CAE(AAS),
∴AE=BD,CE=AD,
∴BD+DE=AE+DE=AD=CE;
29.解:初步探索:EF=BE+FD,
故答案为:EF=BE+FD,
探索延伸:结论仍然成立,
证明:如图2,延长FD到G,使DG=BE,连接AG,
∵∠B+∠ADC=180°,∠ADG+∠ADC=180°
∴∠B=∠ADG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG,
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF,
∴EF=FG,
∴FG=DG+FD=BE+DF;
结论运用:解:如图3,连接EF,延长AE、BF交于点C,
∵∠AOB=30°+90°+(90°﹣70°)=140°,
∠EOF=70°,
∴∠EOF=∠AOB,
∵OA=OB,
∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,
∴符合探索延伸中的条件
∴结论EF=AE+BF成立,
即EF=1.5×(60+80)=210海里,
答:此时两舰艇之间的距离是210海里.