考点
学习目标
核心素养
频率与概率
在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别
数学抽象、数学运算
概率的意义
会用概率的意义解释生活中的实例问题
直观想象、
数学建模
在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例 为事件A出现的频率.
事件的概率越大,意味着事件发生的可能性越大,,在重复试验中,相应的频数一般也越大;
事件的概率越小,则事件发生的可能性越小,在重复试验中,相应的频数一般也越小.
频率与概率之间到底是一种怎样的关系呢?
利用计算机模拟掷两枚硬币的试验:在重复试验次数为20,100,500时各做5组试验,得到事件A=“一个正面朝上,一个反面朝上”发生的频数 n和频率fn(A).
序号
n=20
n=100
n=500
频数
频率
频数
频率
频数
频率
1
12
0.6
56
0.56
261
0.522
2
9
0.45
50
0.50
241
0.482
3
13
0.65
48
0.48
250
0.5
4
7
0.35
55
0.55
258
0.516
5
12
0.6
52
0.52
253
0.506
用折线图表示频率的波动情况(如下图).
我们发现:
1.试验次数n相同,频率fn(A)可能不同,这说明随机事件发生的频率具有随机性.
2.从整体来看,频率在概率0.5附近波动.当试验次数较少时,波动幅度较大;当试验次数较大时,波动幅度较小,但试验次数多的波动幅度并不全都比次数少的小,只是波动幅度小的可能性更大.
大量试验表明,在任何确定次数的随机试验中,一个随机事件A发生的频率具有随机性.一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).
我们称频率的这个性质为频率的稳定性.
因此,我们可以使用频率fn(A)估计概率P(A).
例1 新生婴儿性别比是每100名女婴对应的男婴数.通过抽样调查得知,我国2014年,2015年出生的婴儿性别比分别为115.88和113.51.
(1)分别估计我国2014年和2015年男婴的出生率(新生儿中男婴的比率,精确到0.001);
(2) 根据估计结果,你认为”生男孩和生女孩是等可能的”这个判断可靠吗?
(1)2014年男婴出生的频率为
≈0.537
115.88
100+115.88
2015年男婴出生的频率为
≈0.532
113.51
100+113.51
1 由频率估计随机事件的概率
(2) 由于调查新生儿人数的样本非常大,根据频率的稳定性,上述对男婴
出生率的估计具有较高的可信度.
因此,我们有理由怀疑“生男孩和生女孩是等可能的”的结论.
2.某射击运动员进行双向飞碟射击训练,七次训练的成绩记录如下:
射击次数n
100
120
150
100
150
160
150
击中飞碟数nA
81
95
120
81
119
127
121
(1)求各次击中飞碟的频率;(保留三位小数)
(2)该射击运动员击中飞碟的概率约为多少?
(2)由(1)可知该射击运动员在同一条件下击中飞碟的频率都在0.800附近摆动,所以该运动员击中飞碟的概率约为0.800.
2 概率的含义
例2.某医院治疗一种疾病的治愈率为10%,那么,前9个病人都没有治愈,第10个病人就一定能治愈吗?
如果把治疗一个病人作为一次试验,治愈率是10%指随着试验次数的增加,有10%的病人能够治愈.对于一次试验来说,其结果是随机的,但治愈的可能性是10%,前9个病人是这样,第10个病人仍是这样,可能治愈,也可能不能治愈,被治愈的可能性仍是10%.
对概率的正确理解
(1)概率是事件的本质属性,不随试验次数的变化而变化,概率反映了事件发生的可能性的大小,但概率只提供了一种“可能性”,而不是试验总次数中某一事件一定发生的比例.
(2)任何事件的概率都是区间[0,1]上的一个确定数,它度量该事件发生的可能性,概率越接近于1,表明事件发生的可能性就越大;反过来,概率越接近于0,表明事件发生的可能性就越小.
(3)小概率(概率接近于0)事件很少发生,但不代表一定不发生;大概率(概率接近于1)事件经常发生,但不代表一定发生.
(4)必然事件M的概率为1,即P(M)=1;不可能事件N的概率为0,即P(N)=0.
例3.一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.
在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?
3 游戏的公平性
【解析】当游戏玩了10次时,甲乙获胜的频率都为0.5;当游戏玩了1000次时,甲获胜的频率为0.3,乙获胜的频率为0.7.根据频率的稳定性,随着试验次数的增加,频率偏离概率很大的可能性会越来越小.相对10次游戏,1000次游戏时的频率接近概率的可能性更大,因此我们更愿意相信1000次时的频率离概率更近.而游戏玩到1000次时,甲乙获胜的频率分别是0.3和0.7,存在很大差距,所以有理由认为游戏是不公平的.因此,应该支持甲对游戏公平性的判断.
某校高二年级(1)(2)班准备联合举办晚会,组织者欲使晚会气氛热烈、有趣,策划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目.(1)班的文娱委员利用分别标有数字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时(1)班代表获胜,否则(2)班代表获胜.该方案对双方是否公平?为什么?
6
7
5
4
1
2
3
和
4
5
6
7
1
5
6
7
8
2
6
7
8
9
3
7
8
9
10
1.给出下列三个说法,其中正确说法的个数是 ( )
①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;
③随机事件发生的频率就是这个随机事件发生的概率.
A.0 B.1 C.2 D.3
2.数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米2 018石,验得米内夹谷,抽样取米一把,数得270粒内夹谷30粒,则这批米内夹谷约为 ( )
A.222石 B.224石 C.230石 D.232石
由题意,抽样取米一把,数得270粒米内夹谷30粒,即夹谷占有的频率为
3.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
日期
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
天气
晴
雨
阴
阴
阴
雨
阴
晴
晴
晴
阴
晴
晴
晴
晴
日期
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
天气
晴
阴
雨
阴
阴
晴
阴
晴
晴
晴
阴
晴
晴
晴
雨
(1)在4月份任取一天,估计西安市在该天不下雨的概率;
(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.
(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,得在4月份任取一天,西安市在该天不下雨的概率约为 .
(2)称相邻的两个日期为“互邻日期对”(如1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为
以频率估计概率,得运动会期间不下雨的概率约为
10.3.2随机模拟
产生随机数的常用方法:
① ,② ,③ .
其中,计算机或计算器产生的随机数是依照 产生的数,具有__
( 很长),它们具有类似 的性质.因此,计算机或计算器产生的并不是真正的随机数,我们称它们为 .
用计算器产生
用计算机产生
抽签法
确定算法
周期性
周期
随机数
伪随机数
随机模拟
一般地,对于古典概型,我们可以将随机试验中所有基本事件进行编号,利用计算器或计算机产生随机数,从而获得试验结果.这种用计算器或计算机模拟试验的方法,称为 或 .这种方法的最大优点是不需要对试验进行具体操作,可以广泛应用到各个领域.
随机模拟方法
蒙特卡罗方法
例1.一个袋中有7个大小、形状相同的小球,6个白球,1个红球,现任取1个球,若为红球就停止,若为白球就放回,搅拌均匀后再接着取,试设计一个模拟试验计算恰好第三次摸到红球的概率.
用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间(包括1和7)取整数值的随机数,因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组,如下,产生20组随机数:
666 743 671 464 571
561 156 567 732 375
716 116 614 445 117
573 552 274 114 662
就相当于做了20次试验,在这些数组中,前两个数字不是7,第三个数字恰好是7就表示第一次、第二次摸到的是白球,第三次摸到的是红球,它们分别是567和117,共两组,因此恰好第三次摸到红球的概率约为
利用随机模拟估计概率应关注三点
用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:
(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;
(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;
(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.