2021-2022学年北师大版九年级数学上册1.1菱形的性质与判定优生辅导提升训练(Word版,附答案解析)

文档属性

名称 2021-2022学年北师大版九年级数学上册1.1菱形的性质与判定优生辅导提升训练(Word版,附答案解析)
格式 zip
文件大小 1007.8KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-07-30 17:08:13

图片预览

文档简介

2021年北师大版九年级数学上册《1.1菱形的性质与判定》优生辅导提升训练(附答案)
一.菱形的性质
1.若菱形的两条对角线长分别是6和8,则它的周长为(  )
A.20
B.24
C.40
D.48
2.在菱形ABCD中,∠ABC=80°,BA=BE,则∠BAE=(  )
A.70°
B.40°
C.75°
D.30°
3.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;④AC=8cm;⑤S菱形ABCD=80cm2,正确的有(  )
A.①②④⑤
B.①②③④
C.①③④⑤
D.①②③④⑤
4.如图,在菱形ABCD中,点E,F分别是边AD、BD的中点,若EF=2,则BC长为
 
 .
5.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE= 
 .
6.如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.
7.如图,菱形ABCD的周长为8,对角线BD=2,E、F分别是边AD,CD上的两个动点;且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由.
8.如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是(  )
A.直角三角形→等边三角形→等腰三角形→直角三角形
B.直角三角形→等腰三角形→直角三角形→等边三角形
C.直角三角形→等边三角形→直角三角形→等腰三角形
D.等腰三角形→等边三角形→直角三角形→等腰三角形
9.如图,在平面直角坐标系中,菱形ABCD对角线的交点坐标是O(0,0),点B的坐标是(0,1),且BC=,则点A的坐标是
 
 .
二.菱形的判定
10.如图,已知四边形ABCD的对角线互相垂直,若适当添加一个条件,就能判定该四边形是菱形.那么这个条件可以是(  )
A.BA=BC
B.AC=BD
C.AB∥CD
D.AC、BD互相平分
11.如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是(  )
A.等腰梯形
B.矩形
C.菱形
D.正方形
12.下列条件中,能判断四边形是菱形的是(  )
A.对角线相等的平行四边形
B.对角线互相垂直且相等的四边形
C.对角线互相平分且垂直的四边形
D.对角线互相垂直的四边形
13.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.
14.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.
(1)求证:四边形BDCE是菱形;
(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.
15.如图,过?ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.
(1)求证:△PBE≌△QDE;
(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.
三.菱形的判定与性质
16.如图,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(  )
A.∠DAB+∠ABC=180°
B.AB=BC
C.AB=CD,AD=BC
D.∠ABC=∠ADC,∠BAD=∠BCD
17.如图,△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=6,则四边形AEDF的周长是(  )
A.24
B.28
C.32
D.36
18.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则BG= 
 .
19.已知,如图,在?ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.
(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.
20.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于(  )
A.4
B.3
C.2
D.1
21.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.
(1)求证:四边形BNDM是菱形;
(2)若BD=24,MN=10,求菱形BNDM的周长.
参考答案
一.菱形的性质
1.解:如图所示,
根据题意得AO=×8=4,BO=×6=3,
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AC⊥BD,
∴△AOB是直角三角形,
∴AB====5,
∴此菱形的周长为:5×4=20.
故选:A.
2.解:在菱形ABCD∵∠ABC=80°,
∴∠ABD=40°.
∵BA=BE,∴∠BAE==70°.
故选:A.
3.解:∵菱形ABCD的周长为40cm,
∴AB=×4cm=10cm,
∵DE:AB=4:5,
∴DE=8cm,
故①正确;
∵DE⊥AB,且AD=10cm,DE=8cm,
∴AE===6(cm),
∴BE=AB﹣AE=10cm﹣6cm=4cm,
故②正确;
∵DE=8cm,BE=4cm,
∴BD===4(cm),
故③正确;
∵四边形ABCD是菱形,
∴BO=BD=2cm,且AC⊥BD,
∴AO===4(cm),
∴AC=2AO=8cm,
故④正确;
∴S菱形ABCD=AC?BD=×8×4=80(cm2),
故⑤不正确,单位错误;
∴正确的为①②③④,
故选:B.
4.解:∵点E,F分别是边AD、BD的中点,
∴AB=2EF=4,
∵四边形ABCD是菱形,
∴AB=BC=4,
故答案为:4.
5.解:∵四边形ABCD是菱形,
∴AD=BC,AC⊥BD,AO=OC,DO=BO,
∵AC=24,BD=10,
∴AO=12,OD=5,由勾股定理得:AD=13,
∴BC=13,
∴S菱形ABCD=AC?BD=BC×DE,
∴×24×10=13×DE,
解得:DE=,
故答案为:.
6.证明:∵菱形ABCD,
∴BA=BC,∠A=∠C,
∵BE⊥AD,BF⊥CD,
∴∠BEA=∠BFC=90°,
在△ABE与△CBF中

∴△ABE≌△CBF(AAS),
∴AE=CF.
7.(1)证明:∵菱形ABCD的边长为2,对角线BD=2,
∴AB=AD=BD=2,BC=CD=BD=2,
∴△ABD与△BCD都是等边三角形,
∴∠BDE=∠C=60°,
∵AE+CF=2,
∴CF=2﹣AE,
又∵DE=AD﹣AE=2﹣AE,
∴DE=CF,
在△BDE和△BCF中,

∴△BDE≌△BCF(SAS);
(2)解:△BEF是等边三角形.理由如下:
由(1)可知△BDE≌△BCF,
∴BE=BF,∠DBE=∠CBF,
∴∠EBF=∠DBE+∠DBF=∠CBF+∠DBF=∠DBC=60°,
∴△BEF是等边三角形,
由图可知,△BDE绕点B顺时针旋转60°即可得到△BCF;
8.解:∵∠B=60°,故菱形由两个等边三角形组合而成,
当AP⊥BC时,此时△ABP为直角三角形;
当点P到达点C处时,此时△ABP为等边三角形;
当P为CD中点时,△ABP为直角三角形;
当点P与点D重合时,此时△ABP为等腰三角形,
故选:C.
9.解:∵四边形ABCD是菱形,
∴∠BOC=90°,OC=OA,
∵点B的坐标是(0,1),
∴OB=1,
在直角三角形BOC中,BC=,
∴OC==2,
∴点C的坐标(﹣2,0),
∵OA与OC关于原点对称,
∴点A的坐标(2,0).
故答案为:(2,0).
二.菱形的判定
10.解:四边形ABCD中,AC、BD互相垂直,
若四边形ABCD是菱形,需添加的条件是:
AC、BD互相平分;(对角线互相垂直且平分的四边形是菱形)
故选:D.
11.解:连接BD、AC;
∵△ADE、△ECB是等边三角形,
∴AE=DE,EC=BE,∠AED=∠BEC=60°;
∴∠AEC=∠DEB=120°;
∴△AEC≌△DEB(SAS);
∴AC=BD;
∵M、N是CD、AD的中点,
∴MN是△ACD的中位线,即MN=AC;
同理可证得:NP=DB,QP=AC,MQ=BD;
∴MN=NP=PQ=MQ,
∴四边形NPQM是菱形;
故选:C.
12.解:A、对角线相等的平行四边形是矩形,故选项A错误;
B、对角线互相垂直且相等的四边形不一定是菱形,故选项B错误;
C、对角线互相平分且垂直的四边形是菱形,故选项C正确;
D、对角线互相垂直的四边形不一定是菱形,故选项D错误;
故选:C.
13.证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD,
在△AFE和△DBE中,

∴△AFE≌△DBE(AAS);
∴AF=DB.
∵DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形.
14.(1)证明:∵CE∥AB,BE∥CD,
∴四边形BDCE是平行四边形,
∴CE=BD,
∵CE=AD,
∴BD=AD,
又∵∠ACB=90°,
∴CD=AB=BD,
∴四边形BDCE是菱形;
(2)解:连接DE,如图所示:
由(1)得:四边形BDCE是菱形,
∴BC⊥DE,BD=BE,OB=OC,
∵EF⊥BD,点F是BD的中点,
∴BE=DE,
∴BE=DE=BD,
∴∠DBE=60°,∠EBC=∠EBD=30°,
∴OE=EB=3,
∴OB===3,
∴BC=2OB=6.
15.(1)证明:∵四边形ABCD是平行四边形,
∴EB=ED,AB∥CD,
∴∠EBP=∠EDQ,
在△PBE和△QDE中,,
∴△PBE≌△QDE(ASA);
(2)证明:如图所示:
∵△PBE≌△QDE,
∴EP=EQ,
同理:△BME≌△DNE(ASA),
∴EM=EN,
∴四边形PMQN是平行四边形,
∵PQ⊥MN,
∴四边形PMQN是菱形.
三.菱形的判定与性质
16.解:根据题意可得AB∥CD,AD∥BC
∴四边形ABCD是平行四边形
∴AD=BC,AB=CD,∠ABC=∠ADC,∠BAD=∠BCD,∠DAB+∠ABC=180°
故选:B.
17.解:∵DE∥AC,DF∥AB,
∴四边形AEDF为平行四边形,∠EAD=∠FDA.
∵AD平分∠BAC,
∴∠EAD=∠FAD=∠FDA,
∴FA=FD,
∴平行四边形AEDF为菱形.
∵AF=6,
∴C菱形AEDF=4AF=4×6=24.
故选:A.
18.解:∵AG∥BD,BD=FG,
∴四边形BGFD是平行四边形,
∵CF⊥BD,
∴CF⊥AG,
又∵点D是AC中点,
∴BD=DF=AC,
∴四边形BGFD是菱形,
设GF=x,则AF=13﹣x,AC=2x,
∵在Rt△ACF中,∠CFA=90°,
∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,
解得:x=5,
即BG=5.
故答案是:5.
19.(1)证明:∵四边形ABCD是平行四边形
∴AD∥BC,
∴∠EBF=∠AFB,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
∴∠ABF=∠AFB,
∴AB=AF,
∵BO⊥AE,
∴∠AOB=∠EOB=90°,
∵BO=BO,
∴△BOA≌△BOE(ASA),
∴AB=BE,
∴BE=AF,BE∥AF,
∴四边形ABEF是平行四边形,
∵AB=AF.
∴四边形ABEF是菱形.
(2)解:作FG⊥BC于G,
∵四边形ABEF是菱形,AE=6,BF=8,
∴AE⊥BF,OE=AE=3,OB=BF=4,
∴BE==5,
∵S菱形ABEF=?AE?BF=BE?FG,
∴GF=,
∴S平行四边形ABCD=BC?FG=.
20.解:如图:过点P做PM∥CO交AO于M,PM∥CO
∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA
∴四边形COMP为菱形,PM=4
PM∥CO?∠PMD=∠AOP+∠BOP=30°,
又∵PD⊥OA
∴PD=PC=2.
另解:作CN⊥OA.
∴CN=OC=2,
又∵∠CNO=∠PDO,
∴CN∥PD,
∵PC∥OD,
∴四边形CNDP是长方形,
∴PD=CN=2
故选:C.
21.(1)证明:∵AD∥BC,
∴∠DMO=∠BNO,
∵MN是对角线BD的垂直平分线,
∴OB=OD,MN⊥BD,
在△MOD和△NOB中,,
∴△MOD≌△NOB(AAS),
∴OM=ON,
∵OB=OD,
∴四边形BNDM是平行四边形,
∵MN⊥BD,
∴四边形BNDM是菱形;
(2)解:∵四边形BNDM是菱形,BD=24,MN=10,
∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,
在Rt△BOM中,由勾股定理得:BM===13,
∴菱形BNDM的周长=4BM=4×13=52.