2.14近似数
学习目标
1、理解并识记近似数准确数的概念。
2、能对给出的四舍五入得到的近似数,说出它的精确度和有效数字的个数。
3、对给出一个数,能按照指定的精确度,用四舍五入法求近似数。
自学指导
认真看课本P66-P68,完成下列任务:
1、找出什么是近似数?注意区分准确数与近似数。会根据精确度的不同对∏取近似数。
2、看例1,思考:如何根据所给的近似数,判断精确到哪一位?
3、仔细看例2,思考:用四舍五入法,如何求近似数?应注意什么?并完成云图中的问题。
4、看“注意”内容,我们应注意些什么?
6分钟后,比谁能正确地仿照例题做出检测题
下列各数,哪些是近似数?哪些是准确数?
⑴ 1 小时有60分。
⑵绿化队今年植树约2万棵。
⑶小明到书店买了10本书。
⑷一次数学测验中,有2人得100分。
⑸某区在校中学生近75万人。
⑹七年级二班有56人。
概括:一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位。
精确度-- 表示一个近似数近似的程度。
具体可为精确到哪一位或者是保留几个有效数字。
进一法:把某一个数保留到某一指定的数位时,只要后面的数不是0.都在保留的最后一个数字加上1.
例题:某校八年级共有112名同学,想利用45座的汽车春游,要求每位同学都有座,应租多少辆汽车?
解答:
即应租3辆汽车。
去尾法:把某一个数保留到某一指定的数位为止,后面的数全部舍去.
例题:现要将一根100cm长的圆钢截成6cm的小段做零件,最多可以做多少个零件?(不计损耗)
解答:依题意得
(个),故最
多可以做16个。
自学检测一
1、什么叫准确数?
2、什么叫近似数?
准确数-- 与实际完全符合的数
近似数-- 与实际非常接近的数
(经测量,估算的数据)
看谁答的准?
得出定义,揭示内涵
π = 3.1415926???
它是个什么数
回顾:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字.
例1 小明量得课桌长为1.025米,请按下列要求取这个数的近似数,并说出各有几个有效数字
(1)四舍五入到百分位;
(2)四舍五入到十分位;
(3)四舍五入到个位.
解:(1)四舍五入到百分位为1.03米;3个有效数字。
(2)四舍五入到十分位为1.0米;2个有效数字
(3)四舍五入到个位为1米.1个有效数字
例题示范,初步运用
⑵0.0572,精确到 .
下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?
解:⑴132.4,精确到 .
十分位(或精确到0.1)
万分位(或精确到0.0001)
⑷2.4万
⑷2.4万,精确到 .
千位
⑸3.14 ×104
⑸3.14 ×104 ,精确到 .
百位
⑴132.4 ⑵0.0572
(6)0.407 ⑺0.4070 (8)2.4千 ⑼103万 ⑽2.00
有四个有效数字 1,3,2,4
有四个有效数字 5,7,2
有二个有效数字2,4
有三个有效数字3,1,4
自学检测二
在写出近似数的每个有效数字时,用“,”号隔开。
⑹0.407,精确到 .
⑺0.4070 ,精确到 .
⑻2.4千 ,精确到 .
⑼103万,精确到 .
⑽2.00,精确到 .
千分位(即精确到0.001)
万分位(即精确到0.0001)
百位
万位
百分位(即精确到0.01)
有三个有效数字 4,0,7
有四个有效数字 4,0,7,0
有二个有效数字 2,4
有三个有效数字 1,0,3
有三个有效数字 2,0,0
用四舍五入法,括号中的要求对下列各数取近似数
(1) 0.34082 (精确到千分位)
(2) 64.8 (精确到个位)
(3) 1.5046 (精确到0.01)
(4) 0.0692 (保留2个有效数字)
(5) 30542 (保留3个有效数字)
(6)3450238(精确到百位)
(7)6789070(精确到万位)
近似数1.50末位的0能否去掉?近似数1.50和1.5相同吗?
解:有效数字不同 :
1.50有三个有数字,
1.5 有二个有效数字.
精确度不同:
1.50精确到百分位,
1.5 精确到十分位.
6.近似数
1.50
1.5
由此可见,1.50比1.5的精确度高
仔细找出不同点
⑴下列近似数中,精确到千分位的是( )
2.4万 B. 7.030 C. 0.0086 D. 21.06
⑵有效数字 的个数是( )
从右边第一个不是0的数字算起.
B.从左边第一个不是0的数字算起.
C.从小数点后的第一个数字算起.
D.从小数点前的第一个数字算起
⑶近似数0.00050400的有效数字有( )
A. 3个 B. 4个 C. 5个 D. 6个
B
B
C
选择题:
自学检测三
选择:
1、下列各数中,不是近似数的是: ( )
A. 王敏的身高是1.72米
B. 李刚家共有4 口人
C. 我国的人口约有12 亿
D. 书桌的长度是0.85 米
2、下列数中不能由四舍五入得到近似数38.5的数是( )
A. 38.53 B. 38.56001
C. 38.549 D. 38.5099
B
B
五、回顾小结,
突出重点
一、精确度的两种形式(重点): 1、精确到哪一位 2、有效数字
二、给一个近似数,正确指出精确到哪一位?有哪几个有效数字。(难点)
三、几点注意:
1、两个近似数1.5与1.50表示的精确程度不一样。
2、两个近似数6.3万与6.3精确到的数位不同。
3、确定有效数字时应注意:①从左边第一个不是0的数字起。 ②从左边第一个不是0的数字起,到精确到的数位(即最后一位四舍五入所得的数)止,所有的数字。
4、在写出近似数的每个有效数字时,用“,”号隔开。
如:38.006有五个有效数字,3,8,0,0,6,不能写成38006.
本节课里我的收获是……