2.4单摆提升优化(word含解析)-2021-2022学年【新教材】人教版(2019)高中物理选择性必修第一册

文档属性

名称 2.4单摆提升优化(word含解析)-2021-2022学年【新教材】人教版(2019)高中物理选择性必修第一册
格式 docx
文件大小 94.7KB
资源类型 教案
版本资源 人教版(2019)
科目 物理
更新时间 2021-07-31 05:42:40

图片预览

文档简介

2.4单摆提升优化(含解析)
一、单选题
1.下述那种情况,单摆的周期会增大(??

A.?增大摆球的质量?????????????B.?减小单摆的振幅?????????????C.?缩短摆长?????????????D.?将单摆由山下移到山顶
2.为了改变单摆做简谐运动的频率,可以(??

A.?增大摆球质量?????????????????B.?增大摆线长度?????????????????C.?减小振幅?????????????????D.?减小摆线的最大偏角
3.单摆在经过平衡位置时,下列说法不正确的是(???
?)
A.?速度最大?????????????????????????B.?动能最大?????????????????????????C.?回复力为零?????????????????????????D.?加速度为零
4.单摆作简谐运动的回复力是(??

A.?.摆球的重力????????????????????????????????????????????????????????B.?摆球所受的重力沿圆弧切线方向的分力
C.?摆球所受重力与悬线对摆球拉力的合力???????????????D.?悬线对摆球的拉力
5.一摆长为L的单摆在悬点正下方0.75L处有一钉子P,单摆从A点静止释放,已知摆角很小,下列说法中正确的是(??

A.?单摆在最高点A时,绳子的拉力提供回复力?????????B.?单摆在最低点B时,合外力为零
C.?从碰钉到第一次摆回B点的时间为
??????????D.?从碰钉到第一次摆回B点的时间为
6.在一根张紧的绳上挂着四个单摆,甲丙摆长相等,当甲摆摆动时(??

A.?乙摆振幅最大??????????????????B.?丙摆振幅最大??????????????????C.?丁摆频率最小??????????????????D.?乙摆周期最小
7.如图甲所示,一单摆悬挂在拉力传感器上。让单摆在竖直面内做小角度摆动,拉力传感器显示绳子拉力F大小随时间
的变化图像如图乙所示,已知当地的重力加速度为
,则根据图乙中的数据可知(??

A.?此单摆的周期
?????????????????????????????????????????B.?此摆球的质量为
C.?此单摆的摆长
???????????????????????????????????????D.?在
时刻摆球的回复力最小
8.如图,两个摆长相同的单摆一前一后悬挂在同一高度,虚线表示竖直方向,分别拉开一定的角度(都小于5°)同时由静止释放,不计空气阻力。沿两单摆平衡位置的连线方向观察,释放后可能看到的是(??

A.??????????????????????????????????B.??????????????????????????????????C.??????????????????????????????????D.?
9.下列说法中正确的是(??

A.?用弹簧连接一物体沿水平方向做简谐运动,该物体做的是匀变速直线运动
B.?做简谐振动的单摆通过平衡位置时,小球受到的回复力为零,合外力不为零
C.?做简谐运动的物体,当它每次经过同一位置时,速度一定相同
D.?单摆在周期性外力作用下做受迫运动,外力的频率越大,单摆的振幅就越大
10.在火车车厢里用悬线吊着一个小球,由于铁轨接合处的震动使球摆动,如果铁轨长12.5
m,线长40
cm,则下列说法正确的是(??

A.?该单摆的固有周期约2.25
s
B.?不论车速多大,该单摆不可能产生共振
C.?火车速度约10
m/s时,单摆振幅最大
D.?增加单摆的摆长后,火车速度越大,单摆振幅越大
11.如图,BOC为半径为R的光滑弧形槽,O点是弧形槽的最低点。半径R远大于BOC弧长。一小球由静止开始从B点释放,小球在槽内做周期运动。欲使小球运动的周期减小,可采用的方法是(??

A.?让小球释放处更靠近O点?????????????????????????????????????B.?让小球释放时有个初速度
C.?换一个半径R小一些的弧形槽??????????????????????????????D.?换一个半径R大一些的弧形槽
12.两个相同的单摆静止于平衡位置,使摆球分别以水平初速v1、v2(v1>v2)在竖直平面内做小角度摆动,它们的频率与振幅分别为f1

f2和A1

A2

则(??

A.?f1>f2

A1=A2?????????????B.?f1
A1=A2
?????????????C.?f1=f2

A1>A2?????????????D.?f1=f2

A113.沿水平方向振动的弹簧振子在做简谐运动的过程中,下列说法正确的是(??

A.?在平衡位置,它的机械能最大
B.?在最大位移处,它的弹性势能最大
C.?从平衡位置向最大位移处运动过程中,它的弹性势能减小
D.?从最大位移处向平衡位置运动的过程中,它的机械能减小
14.如图所示,一单摆悬于O点,摆长为L,若在O点正下方的O′点钉一个钉子,使OO′=L/2,将单摆拉至A处释放,小球将在A、B、C间来回振动,若振动中摆线与竖直方向夹角小于5°,则此摆的周期是(
??)
A.?????????????????????B.?????????????????????C.?????????????????????D.?
15.甲、乙两个单摆的振动图象如图所示。根据振动图象可以断定(??

A.?甲、乙两单摆振动的频率之比是2:3?????????????????????B.?甲、乙两单摆摆长之比是4:9
C.?甲摆的振动能量大于乙摆的振动能量??????????????????D.?乙摆的振动能量大于甲摆的振动能量
16.如图所示,光滑圆弧轨道的半径为R,圆弧底部中点为O,两个大小可忽略质量分别为

的小球A和B,A在离O很近的轨道上某点,B在点O正上方
处,现同时释放两球,使两球在A小球第三次通过O点时恰好相碰,则
应为(??

A.?????????????????????????????????B.?????????????????????????????????C.?????????????????????????????????D.?
二、综合题
17.如图所示,一质量为m的小钢珠,用长为l的细丝线挂在水平天花板上,初始时,摆线和竖直方向夹角为θ(θ<5°)。释放小球后,
(1)小球摆到最低点所用时间
(2)小球在最低点受到的拉力为多大
18.如图所示,在O点系着一细绳,细绳穿过小球B的通过直径的小孔,使B球能一直顺着绳子滑下来。在O点正下方有一直径为R的光滑弧形轨道,圆心位置恰好在O点,弧形轨道的最低点为O?。在接近O?处有另一小球A,令A、B两球同时开始无初速度释放。假如A球到达平衡位置时正好能够和B球相碰,A、B
球均可视为质点。则:
(1)B球与绳之间的摩擦力与B球重力大小之比是多少?
(2)比值的最小值为多少?
19.将一测力传感器连接到计算机上就可以测量快速变化的力,图甲中O点为单摆的悬点,现将小球(可视为质点)拉到A点,此时细线处于张紧状态,释放摆球,则摆球在竖直平面内的ABC之间来回摆动,其中B点为运动中最低位置,∠AOB=∠COB=α,α小于10°且是未知量.图乙表示由计算机得到细线对摆球的拉力大小F随时间变化的曲线,且图中t=0时刻为摆球从A点开始运动的时刻,根据力学规律和题中信息(g取10m/s2)求:
(1)单摆的周期和摆长;
(2)摆球的质量及摆动过程中的最大速度.
答案解析
一、单选题
1.【答案】
D
【解析】根据单摆的周期公式
,要增大单摆的周期,可以增加摆长或减小重力加速度;与摆球的质量和振幅无关;将单摆由山下移至山顶,重力加速度变小,D符合题意,A、B、C不符合题意。
故答案为:D
2.【答案】
B
【解析】A.改变单摆的频率即改变单摆的周期,由单摆的周期公式
可知单摆的频率和摆球的质量无关,A不符合题意;
B.改变摆线的长度可以改变周期,B符合题意;
C.振幅影响的是单摆的能量不影响周期,C不符合题意;
D.偏角也不影响单摆的周期D不符合题意。
故答案为:B
3.【答案】
D
【解析】A、单摆在经过平衡位置时,其速度最大,故其动能最大,AB不符合题意;
C、根据回复力公式:
,在平衡位置时,位移为零,故其回复力为零,C不符合题意;
D、单摆在竖直面内做圆周运动,故速度方向时刻都在变化,故其加速度时刻不为零,D错误,符合题意。
故答案为:D
4.【答案】
B
【解析】解:对摆球受力分析可知,摆球受重力和绳子的拉力作用;由于球同时需要回复力和向心力;则可知使摆球作简谐运动的回复力不是所受重力和摆线作用于摆球的拉力的合力,也不是所受重力和沿圆弧运动时的向心力的合力,也不是摆球的拉力沿水平方向的分力,而是摆球所受重力沿圆弧切线方向的分力.故B正确,ACD错误.
故选:B.
5.【答案】
C
【解析】A、在最高点
时,重力沿半径方向的分力与绳子的拉力平衡,重力沿圆弧切线的分力提供回复力,即绳子的拉力和摆球重力的合力提供回复力,A不符合题意;
B、在最低点由绳子的拉力和重力合力提供向心力,合外力不为零,B不符合题意;
CD、单摆运动的周期为
,碰钉后绳长变短为
,周期变长为
,从碰钉到第一次摆回
点的时间为
,C符合题意,D不符合题意。
故答案为:C
6.【答案】
B
【解析】CD.因为受迫振动的频率与驱动力的频率相等,与本身固有频率无关,由题可知,乙、丙、丁是受迫运动,所以乙、丙、丁的振动频率等于甲的振动频率,所以它们的周期相等,每个单摆按照甲的固有频率振动。CD不符合题意;
AB.甲丙摆长相等,丙摆的固有频率与甲摆的振动频率相同,所以甲、丙会发生共振,因此丙的振幅最大,B符合题意,A不符合题意。
故答案为:B。
7.【答案】
C
【解析】A.摆球运动到最低点时,由重力和绳子拉力的合力提供向心力,所以摆球运动到最低点时,绳子拉力最大,则此单摆的周期为
A不符合题意;
B.摆球运动到最低点时,由重力和绳子拉力的合力提供向心力,则有
此摆球的质量为
B不符合题意;
C.根据单摆周期公式
可得此单摆的摆长
C符合题意;
D.单摆的回复力是重力沿摆球运动轨迹切向的分力提供,摆球运动到最低点时,摆球的回复力最小,所以在
时刻摆球的回复力最小,在
时刻摆球的回复力最大,D不符合题意。
故答案为:C。
8.【答案】
C
【解析】因两个单摆的摆长相同,根据单摆周期公式
,可知两个单摆的周期相同,两摆同时由静止释放,应同时到达平衡位置,同时到达右边最大位移处。
故答案为:C。
9.【答案】
B
【解析】A.做简谐运动的物体,是变加速直线运动,A不符合题意;
B.摆球受到的回复力是重力沿圆弧切线方向上的分力,经过平衡位置时,回复力为零。由于单摆做圆周运动在平衡位置,合力不为零,合力提供向心力,方向指向悬点,B符合题意;
C.做简谐运动的物体,物体每次通过同一位置时其速度大小相等,方向不一定相同,故速度不一定相同,C不符合题意;
D.在周期性的外力作用下做受迫运动,则外力的频率越大,单摆的振幅可能变大,也可能变小,D不符合题意。
故答案为:B。
10.【答案】
C
【解析】A.单摆的固有周期
A不符合题意;
BC.当列车的振动频率与小球的固有频率相同时,此时小球达共振,振幅最大,即当列车在长12.5m的钢轨上运行的时间为1.26s时,车厢发生共振,则有
B不符合题意C符合题意;
D.增加单摆的摆长,根据
单摆的固有周期增大,火车速度增大时,则列车在长12.5m的钢轨上运行的时间减小,即列车的振动周期与小球的固有周期相差增大,单摆振幅减小,D不符合题意;
故答案为:C。
11.【答案】
C
【解析】小球的运动可视为单摆模型,由单摆的周期公式
可知,其周期取决于摆长和g,与质量和振幅无关。因此想要减小小球运动的周期,可以减小摆长L即换一个半径R小一点的弧形槽,ABD不符合题意,C符合题意。
故答案为:C。
12.【答案】
C
【解析】根据单摆周期公式
相同的单摆,L相同,则T周期相同,根据频率
所以频率相同,即f1=f2。根据机械能守恒得,速度大者摆角大,则振幅也大,所以

故答案为:C。
13.【答案】
B
【解析】AD.弹簧振子在做简谐运动的过程中机械能守恒,各个位置的机械能相等,AD不符合题意;
B.在最大位移时弹簧的形变量最大,它的弹性势能最大,B符合题意;
C.从平衡位置向最大位移处运动过程中,弹簧的伸长量变大,即弹性势能增大,C不符合题意。
故答案为:B。
14.【答案】
D
【解析】原来单摆的摆线与竖直成5°角时无初速释放,右半边运动的时间为
由机械能守恒可知,小球单摆左侧和右侧的高度相同,而右侧的摆线长,故其摆角应小于左侧的摆角,即小于5°,竖直位置左侧的时间为
故小球的运动周期为:
T=t1+t2=
故答案为:D.
15.【答案】
B
【解析】A项:甲、乙两个单摆的摆周期之比为2:3,根据
,两个单摆的频率之比为3:2,A不符合题意;
B项:从单摆的位移时间图象可以看出两个单摆的周期之比为2:3,根据单摆的周期公式
,甲、乙两个单摆的摆长之比为4:9,B符合题意;
C、D项:单摆的能量与振幅有关,还与振子的质量有关,由于振子的质量不知道,故无法判断振动的能量情况,CD不符合题意。
故答案为:B
16.【答案】
B
【解析】据题分析知,可将A球运动看作摆长为R的单摆,其周期:
,A第三次通过位置O,即用时:
,B作自由落体运动,用时与A相同,故
,B符合题意,ACD不符合题意。
二、综合题
17.【答案】
(1)解:小球做简谐运动,则小球从释放到最低点所用的时间为:
(2)解:从释放到最低点,由动能定理有:
根据牛顿第二定律
?
?有
【解析】(1)利用周期的表达式可以求出运动的时间;
(2)利用动能定理结合牛顿第二定律可以求出拉力的大小。
18.【答案】
(1)解:圆弧轨道运动的小球A接近O?运动,故可看做单摆模型
A球作简谐运动,由周期公式得A到O?的时间为:
B球作匀变速运动从O到O?的时间为
,由题意得
,解得
对于小球B,由牛顿第二定律得:mg-f=ma

?
(n=0,1,2……)
(2)解:由
?
可知当n=0时,则比值最小,最小值为
【解析】【分析】(1)利用单摆周期的表达式可以求出A到最低点的运动时间,结合匀变速的位移公式和牛顿第二定律可以求出B球受到的摩擦力和重力之比;
(2)利用比值的定义式可以求出比值的最小值。
19.【答案】
(1)解:摆球受力分析如图,小球在一个周期内两次经过最低点,根据该规律,知:
T=
πs.
由单摆的周期公式为:T=2π

得:L=

=0.8m
(2)解:在最高点A,有:
Fmin=mgcosα=0.495N﹣﹣﹣﹣①
在最低点B,有:
Fmax=mg+m
=0.510﹣﹣﹣﹣﹣②
从A到B,滑块机械能守恒,有:
mgR(1﹣cosθ)=
mv2﹣﹣﹣﹣③
联立三式并代入数据得:
m=0.05kg;v=0.283m/s
【解析】【分析】(1)小球运动到最低点时,绳子的拉力最大,在一个周期内两次经过最低点,根据该规律,求出单摆的周期.再根据单摆的周期公式T=2π
求出摆长.(2)小球在最高点时绳子的拉力最小,在最低点时绳子拉力最大,求出最高点和最低点绳子拉力的表达式,再结合动能定理或机械能守恒定律求出摆球的质量和最大速度