2021-2022学年九年级数学北师大版上册《1.1菱形的性质与判定》能力达标提升训练(word版含答案)

文档属性

名称 2021-2022学年九年级数学北师大版上册《1.1菱形的性质与判定》能力达标提升训练(word版含答案)
格式 doc
文件大小 290.7KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-08-03 18:26:43

图片预览

文档简介

2021-2022学年北师大版九年级数学上册《1.1菱形的性质与判定》
能力达标提升训练(附答案)
一.选择题
1.关于菱形的性质,以下说法不正确的是(  )
A.四条边相等 B.对角线相等
C.对角线互相垂直 D.是轴对称图形
2.菱形的两条对角线的长分别是6和8,则这个菱形的周长是(  )
A.24 B.20 C.10 D.5
3.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是(  )
A.∠ADB=90° B.OA=OB C.OA=OC D.AB=BC
4.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是(  )
A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD
5.如图,在菱形ABCD中,对角线AC,BD交于点E,延长BC到点F,使CF=BC,连接AF,DF,AF分别交CD,BD于点G,O,则下列结论错误的是(  )
A.四边形ACFD是平行四边形 B.BD2+FD2=BF2
C.OE=BD D.面积关系:S△GEO=S△ADO
6.如图,在菱形ABCD中,E、F分别是AB、CD上的点,且AE=CF,EF与AC相交于点O,连接BO.若∠DAC=36°,则∠OBC的度数为(  )
A.36° B.54° C.64° D.72°
7.如图,已知点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD、DC延长线的垂线,垂足分别为点E、F.若∠ABC=120°,AB=2,则PE﹣PF的值为(  )
A. B. C.2 D.
8.如图,AC是菱形ABCD的对角线,P是AC上一个动点,过点P分别作AB、BC的垂线,垂足分别是F和E.若菱形ABCD的周长是12cm,面积是6cm2,则PE+PF的值是(  )
A.1.5 B.1 C.2 D.4
9.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°,给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;
③AD=4AG;④4FH=BD;其中正确结论的是(  )
A.①②③ B.①②④ C.①③④ D.②③④
二.填空题
10.菱形ABCD中,AB=6,∠ABC=60°,以AD为边作等腰直角三角形ADF,∠DAF=90°,连接BF,BD,则△BDF的面积为    .
11.如图,菱形ABCD的对角线AC、BD相交于点O,OE⊥AD,垂足为E,AC=8,BD=6,则OE的长为   .
12.如图,将两条宽度均为2的纸条相交成30°角叠放,则重合部分构成的四边形ABCD的面积为   .
13.如图,四边形ABCD为菱形,∠ABC=70°,延长BC到E,在∠DCE内作射线CM,使得∠ECM=15°,过点D作DF⊥CM,垂足为F,若DF=,则对角线BD的长为    .(结果保留根号)
14.如图,菱形ABCD中,EF是AB的垂直平分线,∠FBC=80°,则∠ACB=   °.
15.如图,A(0,4),B(8,0),点C是x轴正半轴上一点,D是平面内任意一点,若以A、B、C、D为顶点的四边形是菱形,则点D的坐标为   .
16.如图,菱形ABCD和菱形EFGH的面积分别为9cm2和64cm2,CD落在EF上,∠A=∠E,若△BCF的面积为4cm2,则△BDH的面积是   cm2.
三.解答题
17.如图,四边形ABCD是菱形,点E、F分别在边AB、AD的延长线上,且BE=DF,连接CE、CF.求证:CE=CF.
18.如图,在菱形ABCD中,E,F是对角线AC上的两点,且AE=CF.
(1)求证:△ABE≌△CDF;
(2)求证:四边形BEDF是菱形.
19.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.
(1)求证:四边形BNDM是菱形;
(2)若BD=24,MN=10,求菱形BNDM的周长.
20.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.
(1)求证:四边形AECF是菱形;
(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.
参考答案
一.选择题
1.解:A.菱形的四条边相等,正确,不符合题意,
B.菱形的对角线互相垂直且平分,对角线不一定相等,不正确,符合题意,
C.菱形的对角线互相垂直且平分,正确,不符合题意,
D.菱形是轴对称图形,正确,不符合题意,
故选:B.
2.解:如图所示,
根据题意得AO=×6=3,BO=×8=4,
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AC⊥BD,
∴△AOB是直角三角形,
∴AB==5,
∴此菱形的周长为:5×4=20.
故选:B.
3.解:A、平行四边形ABCD中,∠ADB=90°,
不能判定四边形ABCD为菱形,故选项A不符合题意;
B、∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵OA=OB,
∴AC=BD,
∴平行四边形ABCD是矩形,不能判定四边形ABCD为菱形,故选项B不符合题意;
C、∵四边形ABCD是平行四边形,
∴OA=OC,不能判定四边形ABCD为菱形,故选项C不符合题意;
D、∵四边形ABCD是平行四边形,AB=BC,
∴平行四边形ABCD是菱形;故选项D符合题意;
故选:D.
4.解:由四边形ABCD是菱形可得:AB=AD,∠B=∠D,
A、添加BE=DF,可用SAS证明△ABE≌△ADF,故不符合题意;
B、添加∠BAE=∠DAF,可用ASA证明△ABE≌△ADF,故不符合题意;
C、添加AE=AD,不能证明△ABE≌△ADF,故符合题意;
D、添加∠AEB=∠AFD,可用AAS证明△ABE≌△ADF,故不符合题意;
故选:C.
5.解:∵四边形ABCD是菱形,
∴AD∥BC,AD=BC,AE=EC,BE=DE,AC⊥BD,
∵CF=BC,
∴CF=AD,
∴四边形ACFD是平行四边形,故选项A不合题意;
∴AC∥DF,DG=GC,
∴BD⊥DF,
∴BD2+FD2=BF2,故选项B不合题意;
∵DG=GC,AE=EC,
∴EG∥AD,AD=2EG,
∴S△GEO=S△ADO,OE=DE=BD,故选项C符合题意,选项D不合题意,
故选:C.
6.解:∵四边形ABCD是菱形,
∴AB=BC=AD=CD,AB∥CD,AD∥BC,
∴∠EAO=∠FCO,∠DAC=∠ACB=36°,
在△AOE和△COF中,

∴△AOE≌△COF(AAS),
∴AO=CO,
又∵AB=BC,
∴BO⊥AC,
∴∠OBC=90°﹣∠ACB=54°,
故选:B.
7.解:设AC交BD于O,如图:
∵菱形ABCD,∠ABC=120°,AB=2,
∴∠BAD=∠BCD=60°,∠DAC=∠DCA=30°,AD=AB=2,BD⊥AC,
Rt△AOD中,OD=AD=1,OA==,
∴AC=2OA=2,
Rt△APE中,∠DAC=30°,PE=AP,
Rt△CPF中,∠PCF=∠DCA=30°,PF=CP,
∴PE﹣PF=AP﹣CP=(AP﹣CP)=AC,
∴PE﹣PF=,
故选:B.
8.解:如图,连接BP,
∵菱形ABCD的周长是12cm,面积是6cm2,
∴AB=BC==3(cm),S△ABC==3(cm2),
∵S△ABC=S△ABP+S△BPC,
∴3=AB?PF+BC?PE,
∴3=×3×PE+×3×PF=(PE+PF),
∴PE+PF=2(cm),
故选:C.
9.解:∵△ACE是等边三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠EAF=∠ACB=90°,AB=2BC,
∵F为AB的中点,
∴AB=2AF,
∴BC=AF,
在△ABC和△EFA中,

∴△ABC≌△EFA(SAS),
∴FE=AB,∠AEF=∠BAC=30°,
∴∠AHE=180°﹣∠EAC﹣∠AEF=180°﹣60°﹣30°=90°,
∴EF⊥AC,故①正确,
∵EF⊥AC,∠ACB=90°,
∴FH∥BC,
∵F是AB的中点,
∴FH是△ABC的中位线,
∴FH=BC,
∵BC=AB,AB=BD,
∴BD=4FH,故④正确;
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠FEA,
在△DBF和△EFA中,

∴△DBF≌△EFA(AAS),
∴AE=DF,
∵FE=AB=AD,
∴四边形ADFE为平行四边形,
∵AB>AC,
∴AD>AE,
∴四边形ADFE不是菱形,故②错误;
∵AG=AF,
∴AG=AB,
∵AD=AB,
则AD=4AG,故③正确,
故选:C.
二.填空题
10.解:当AF在AD上方时,如图,延长FA交BC于E,
∵AB=6,∠ABC=60°,
∴BE=3,AE=3,
S菱形ABCD=BC×AE=6×=18,
∴S△ABD==9,
S△ABF=,
S△ADF=,
∴S△BDF=S△ABD+S△ABF+S△ADF=9,
当AF在AD下方时,如图,
则S△BDF=S△ABF+S△ADF﹣S△ABD=27﹣9,
故答案为:27+9或27﹣9.
11.解:∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,DO=BO,
∵AC=8,BD=6,
∴AO=4,DO=3,
∴AD===5,
又∵OE⊥AD,
∴,
∴,
解得OE=,
故答案为:.
12.解:过点A作AE⊥BC于E,AF⊥CD于F,如图所示:
∵两条纸条宽度相同,
∴AE=AF,
∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形,∠ABC=30°,
∵S?ABCD=BC?AE=CD?AF,
又∵AE=AF,
∴BC=CD,
∴四边形ABCD是菱形,
∴AB=BC,
在Rt△AEB中,∠AEB=90°,∠ABC=30°,AE=2,
∴BC=AB=2AE=4,
∴四边形ABCD的面积=BC?AE=4×2=8,
故答案为:8.
13.解:如图,连接AC交BD于点H,
由菱形的性质得∠BDC=35°,∠DCE=70°,
又∵∠MCE=15°,
∴∠DCF=55°,
∵DF⊥CM,
∴∠CDF=35°,
又∵四边形ABCD是菱形,
∴BD平分∠ADC,
∴∠HDC=35°,
在△CDH和△CDF中,

∴△CDH≌△CDF(AAS),
∴DF=DH=,
∴DB=2,
故答案为2.
14.解:∵四边形ABCD是菱形,
∴AD∥BC,∠DAC=∠BAC,
∴∠AFB=∠FBC=80°,∠DAC=∠ACB,
∵EF是AB的垂直平分线,
∴AF=BF,
∴∠FAB=∠FBA=(180°﹣∠AFB)=50°,
∴∠DAC=∠BAC=25°,
∴∠ACB=25°,
故答案为:25.
15.解:当AB为菱形的对角线时,如图1,设菱形的边长为m,
∵A(0,4),B(8,0),
∴OA=4,OB=8,
∵四边形ABCD为菱形,
∴CA=AD=BC,AD∥BC,
∴CA=CB=8﹣m,
在Rt△AOC中,42+(8﹣m)2=m2,解得m=5,
∴D(5,4);
当AB为菱形的边时,如图2,
AB==4,
∵四边形ABCD为菱形,
∴BC=AB=AD=4,AD∥BC,
∴D(4,4),
综上所述,D点坐标为(5,4)或(4,4).
故答案为(5,4)或(4,4).
16.解:如图,连接FH,
∵四边形ABCD是菱形,四边形EFGH是菱形,∠A=∠E,
∴∠ADC=∠EFG,∠BDC=∠ADC=∠EFH=∠EFG,△BDC的面积=×S菱形ABCD=4.5(cm2),
∴BD∥FH,
∴△BDH的面积=△BDF的面积,
∴△BDH的面积=S△BDC+S△BCF=8.5(cm2),
故答案为8.5.
三.解答题
17.证明:∵四边形ABCD是菱形,
∴BC=CD,∠ABC=∠ADC,
∵∠ABC+∠CBE=180°,
∠ADC+∠CDF=180°,
∴∠CBE=∠CDF,
在△CDF和△CBE中,

∴△CDF≌△CBE(SAS),
∴CE=CF.
18.证明:(1)∵四边形ABCD是菱形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,
在△ABE和△CDF中,

∴△ABE≌△CDF(SAS);
(2)如图,连接BD,交AC于O,
∵四边形ABCD是菱形,
∴BD⊥AC,AO=CO,BO=DO,
∵AE=CF,
∴EO=FO,
∴四边形BEDF是平行四边形,
又∵BD⊥EF,
∴平行四边形BEDF是菱形.
19.(1)证明:∵AD∥BC,
∴∠DMO=∠BNO,
∵MN是对角线BD的垂直平分线,
∴OB=OD,MN⊥BD,
在△MOD和△NOB中,,
∴△MOD≌△NOB(AAS),
∴OM=ON,
∵OB=OD,
∴四边形BNDM是平行四边形,
∵MN⊥BD,
∴四边形BNDM是菱形;
(2)解:∵四边形BNDM是菱形,BD=24,MN=10,
∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,
在Rt△BOM中,由勾股定理得:BM===13,
∴菱形BNDM的周长=4BM=4×13=52.
20.解:(1)证明:如图,
在△ABC中,点D是AC的中点,
∴AD=DC,
∵AF∥BC,
∴∠FAD=∠ECD,∠AFD=∠CED,
∴△AFD≌△CED(AAS),
∴AF=EC,
∴四边形AECF是平行四边形,
又EF⊥AC,点D是AC的中点,即EF垂直平分AC,
∴AF=FC,
∴平行四边形AECF是菱形.
(2)如图,过点A作AG⊥BC于点G,
由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,
∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,
∴∠AEB=∠FAE=60°,
∵AG⊥BC,
∴∠AGB=∠AGE=90°,
∴∠GAE=30°,
∴GE=AE=1,AG=GE=,
∵∠B=45°,
∴∠GAB=∠B=45°,
∴BG=AG=,
∴AB=BG=.