2021-2022学年人教五四新版九年级上册数学《第30章
旋转》单元测试卷
一.选择题
1.将小鱼图案绕着头部某点顺时针旋转90°后可以得到的图案是( )
A.
B.
C.
D.
2.下列现象属于旋转的是( )
A.摩托车在急刹车时向前滑动
B.飞机起飞后冲向空中的过程
C.幸运大转盘转动的过程
D.笔直的铁轨上飞驰而过的火车
3.在?ABCD中,对角线AC与BD相交于点O,则能通过旋转到达重合的三角形有( )
A.2对
B.3对
C.4对
D.5对
4.下列四个图形中,是中心对称图形的是( )
A.
B.
C.
D.
5.在直角坐标系中,点A(﹣1,2)关于原点对称的点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
6.如图是4×4的正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有( )
A.1个
B.2个
C.3个
D.4个
7.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( )
A.30°
B.60°
C.120°
D.180°
8.用一条直线m将如图1的直角铁皮分成面积相等的两部分.图2、图3分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是( )
A.甲正确,乙不正确
B.甲不正确,乙正确
C.甲、乙都正确
D.甲、乙都不正确
9.如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是( )
A.OC=OC′
B.OA=OA′
C.BC=B′C′
D.∠ABC=∠A′C′B′
10.如图,△AOB为等腰三角形,OA=AB,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为( )
A.
B.
C.
D.
二.填空题
11.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为
.
12.钟表上的分针绕其轴心旋转,分针经过15分钟后,分针转过的角度是
.
13.如图所示,图形①经过
变换得到图形②;图形②经过
变到图形③;图形③经过
变换得到图形④(填平移、旋转或轴对称).
14.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为
.
15.既是轴对称图形,又是中心对称图形的四边形是
.
16.与点P(3,4)关于原点对称的点的坐标为
.
17.在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有
种.
18.已知等边△ABC的边长为4,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是
.
19.正三角形中心旋转
度的整倍数之后能和自己重合.
20.如图①为Rt△AOB,∠AOB=90°,其中OA=3,OB=4.将AOB沿x轴依次以A,B,O为旋转中心顺时针旋转.分别得图②,图③,…,则旋转到图⑩时直角顶点的坐标是
.
三.解答题
21.如图,4×5的方格纸中,请你用三种不同的方法在除阴影之外的方格中任意选择一个涂黑,使得图中阴影部分构成的图形是轴对称图形.
22.有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.
23.(1)计算:
+﹣2﹣1;
(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是
;在前16个图案中有
个;第2008个图案是
.
24.如图,已知AD=AE,AB=AC.
(1)求证:∠B=∠C;
(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?
25.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.
求:①旋转角的度数
;
②线段OD的长
;
③求∠BDC的度数.
(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.
26.如图,已知正方形ABCD的面积为S.
(1)求作:四边形A1B1C1D1,使得点A1和点A关于点B对称,点B1和点B关于点C对称,点C1和点C关于点D对称,点D1和点D关于点A对称;(只要求画出图形,不要求写作法)
(2)用S表示(1)中作出的四边形A1B1C1D1的面积S1;
(3)若将已知条件中的正方形改为任意四边形,面积仍为S,并按(1)的要求作出一个新的四个边形,面积为S2,则S1与S2是否相等,为什么?
参考答案与试题解析
一.选择题
1.解:小鱼图案绕着头部某点顺时针旋转90°后可以得到的图案是B中图案,
故选:B.
2.解:A、摩托车在急刹车时向前滑动是平移,故此选项错误;
B、飞机起飞后冲向空中的过程是平移,故此选项错误;
C、幸运大转盘转动的过程是旋转,故此选项正确;
D、笔直的铁轨上飞驰而过的火车是平移,故此选项错误;
故选:C.
3.解:根据平行四边形的性质可知有4对全等的三角形:△AOB≌△COD、△AOD≌△COB、△ADC≌△CBA、△ABD≌△CBD.它们能通过旋转达到重合.故选C.
4.解:A、不是中心对称图形,故本选项不合题意;
B、是中心对称图形,故本选项符合题意;
C、不是中心对称图形,故本选项不合题意;
D、不是中心对称图形,故本选项不合题意.
故选:B.
5.解:点A(﹣1,2)关于原点对称的点是(1,﹣2),所以在第四象限.
故选:D.
6.解:如图所示:
,
共4个,
故选:D.
7.解:正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,
故选:C.
8.解:如图:图形2中,直线m经过了大长方形和小长方形的对角线的交点,所以两旁的图形的面积都是大长方形和小长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即甲做法正确;
图形3中,经过大正方形和图形外不添补的长方形的对角线的交点,直线两旁的面积都是大正方形面积的一半﹣添补的长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即乙做法正确.
故选:C.
9.解:对应点的连线被对称中心平分,A,B正确;
成中心对称图形的两个图形是全等形,那么对应线段相等,C正确.
故选:D.
10.解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,
∵A(2,),
∴OC=2,AC=,
由勾股定理得,OA===3,
∵△AOB为等腰三角形,OB是底边,
∴OB=2OC=2×2=4,
由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,
∴sin∠ABO=sin∠O′BD,
∴=
∴O′D=,
BD===,
∴OD=OB+BD=4+=,
∴点O′的坐标为(,).
故选:D.
二.填空题
11.解:∵在Rt△ABC中,∠B=30°,AC=1,
∴AB=2AC=2,
根据中心对称的性质得到BB′=2AB=4.
故答案为:4.
12.解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,
则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,
那么15分钟,分针旋转了15×6°=90°.
故答案为:90°.
13.解:仔细观察各个图的位置关系可知:①和②是轴对称关系,②和③的形状大小一样,是平移关系,③和④图形的大小一样,但方向发生了变化,是旋转.
∴图形①经过轴对称变换得到图形②;图形②经过平移变到图形③;图形③经过旋转变换得到图形④.
14.解:∵菱形的两条对角线的长分别为6和8,
∴菱形的面积=×6×8=24,
∵O是菱形两条对角线的交点,
∴阴影部分的面积=×24=12.
故答案为:12.
15.解:矩形(答案不唯一).
16.解:点P(3,4)关于中心对称的点的坐标为(﹣3,﹣4).
17.解:如图所示.
这样的添法共有4种.
故答案为:4.
18.解:如图,由旋转可得∠ACQ=∠B=60°,
又∵∠ACB=60°,
∴∠BCQ=120°,
∵点D是AC边的中点,
∴CD=2,
当DQ⊥CQ时,DQ的长最小,
此时,∠CDQ=30°,
∴CQ=CD=1,
∴DQ==,
∴DQ的最小值是,
故答案为.
19.解:∵360°÷3=120°,
∴该图形绕中心至少旋转120度后能和原来的图案互相重合.
故答案为:120.
20.解:∵∠AOB=90°,OA=3,OB=4,
∴AB===5,
根据图形,每3个图形为一个循环组,3+5+4=12,
所以,图⑨的直角顶点在x轴上,横坐标为12×3=36,
所以,图⑨的顶点坐标为(36,0),
又∵图⑩的直角顶点与图⑨的直角顶点重合,
∴图⑩的直角顶点的坐标为(36,0).
故答案为:(36,0).
三.解答题
21.解:如图所示:
.
22.解:如图所示,有三种思路:
23.解:(1)原式==2;
(2)根据分析,知应分别为,5,.
24.(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;
∴△AEB≌△ADC,
∴∠B=∠C.
(2)解:先将△ADC绕点A逆时针旋转50°,
再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.
或先将△ADC绕点A顺时针旋转50°,
再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.
25.解:(1)①∵△ABC为等边三角形,
∴BA=BC,∠ABC=60°,
∵△BAO绕点B顺时针旋转后得到△BCD,
∴∠OBD=∠ABC=60°,
∴旋转角的度数为60°;
②∵△BAO绕点B顺时针旋转后得到△BCD,
∴BO=BD,
而∠OBD=60°,
∴△OBD为等边三角形;
∴OD=OB=4;
③∵△BOD为等边三角形,
∴∠BDO=60°,
∵△BAO绕点B顺时针旋转后得到△BCD,
∴CD=AO=3,
在△OCD中,CD=3,OD=4,OC=5,
∵32+42=52,
∴CD2+OD2=OC2,
∴△OCD为直角三角形,∠ODC=90°,
∴∠BDC=∠BDO+∠ODC=60°+90°=150°;
(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:
∵△BAO绕点B顺时针旋转后得到△BCD,
∴∠OBD=∠ABC=90°,BO=BD,CD=AO,
∴△OBD为等腰直角三角形,
∴OD=OB,
∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,
∴OA2+2OB2=OC2,
∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.
26.解:(1)如图①所示.
(2)设正方形ABCD的边长为a,
则AA1=2a,S△AA1D1=?AA1?AD1=a2,
同理,S△BB1A1=S△CC1B1=S△DD1C1=a2,
∴S1=S△AA1D1+S△BB1A1+S△CC1B1+S△DD1C1+S正方形ABCD=5a2=5S.
(本问也可以先证明四边形A1B1C1D1是正方形,再求出其边长为a,从而算出S四边形A1B1C1D1=5S)
(3)S1=S2
理由如下:
首先画出图形②,连接BD、BD1,
∵△BDD1中,AB是中线,
∴S△ABD1=S△ABD.
又∵△AA1D1中,BD1是中线,
∴S△ABD1=S△A1BD1
∴S△AA1D1=2S△ABD
同理,得S△CC1B1=2S△CBD
∴S△AA1D1+S△CC1B1=2(S△ABD+S△CBD)=2S.
同理,得S△BA1B1+S△DD1C1=2S,
∴S2=S△AA1D1+S△BB1A1+S△CC1B1+S△DD1C1+S四边形ABCD=5S.
由(2)得,S1=5S.
∴S1=S2.