《12.3角的平分线的性质》同步能力提升训练2021-2022学年人教版八年级数学上册(Word版 含答案)

文档属性

名称 《12.3角的平分线的性质》同步能力提升训练2021-2022学年人教版八年级数学上册(Word版 含答案)
格式 doc
文件大小 279.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-08-06 10:10:59

图片预览

文档简介

2021-2022人教版八年级数学上册《12.3角的平分线的性质》同步能力提升训练(附答案)
1.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,DE⊥AC,垂足为点E,若BD=2,则DE的长为(  )
A.3 B. C.2 D.6
2.如图,在△ABC中,AD是∠BAC的平分线,DE⊥AC,垂足为E,若AB=12,DE=4,则△ABD的面积是(  )
A.4 B.12 C.24 D.48
3.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD=3,Q为AB上一动点,则DQ的最小值为(  )
A.1 B.2 C.2.5 D.
4.如图,OD平分∠AOB,DE⊥AO于点E,DE=4.2,F是射线OB上的任一点,则DF的长度不可能是(  )
A.3.9 B.4.2 C.4.7 D.5.84
5.如图,已知△ABC中,∠C=90o,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10,则△DEB的周长为(  )
A.9 B.5 C.10 D.不能确定
6.如图,点D是△ABC外的一点,BD,CD分别平分外角∠CBE与∠BCF,连接AD交BC于点O.下列结论一定成立的是(  )
A.DB=DC B.OA=OD C.∠BDA=∠CDA D.∠BAD=∠CAD
7.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的的面积等于(  )
A.4 B.5 C.7 D.10
8.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF交AD于点G,交BE于点H,下面说法正确的是(  )
①△ABE的面积=△BCE的面积;②∠FAG=∠FCB;③AF=AG;④BH=CH.
A.①②③④ B.①②③ C.②④ D.①③
9.如图,△ABC中,AB=6,AC=4,AD平分∠BAC,DE⊥AB于点E,BF⊥AC于点F,DE=2,则BF的长为(  )
A.3 B.4 C.5 D.6
10.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC的度数为(  )
A.70° B.120° C.125° D.130°
11.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE; ④AD=AB+CD,四个结论中成立的是(  )
A.①②④ B.①②③ C.②③④ D.①③
12.如图,△ABE中,∠E=90°,AC是∠BAE的角平分线.
(1)若∠B=40°,求∠BAC的度数;
(2)若D是BC的中点,△ADC的面积为16,AE=8,求BC的长.
13.∠B=∠C=90°,EB=EC,DE平分∠ADC,求证:AE是∠DAB平分线.
14.已知:如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA,PE⊥OB,垂足分别为D、E,点F是OC上的另一点,连接DF,EF.求证:DF=EF.
15.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.
16.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求证:AD平分∠BAC;
(2)直接写出AB+AC与AE之间的等量关系.
17.如图,AC平分∠BAD,CE⊥AB,CD⊥AD,点E、D为垂足,CF=CB.
(1)求证:BE=FD;
(2)若AC=10,AD=8,求四边形ABCF的面积.
18.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,
(1)如图1,求∠BDC的度数;
(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.
19.如图,在△ABC中,∠CAB=60°,∠CAB的平分线AP与∠CBA的平分线BP相交于点P,连接CP.
(1)求证:CP平分∠ACB;
(2)若AP=4,△ABC的周长为20,求△ABC的面积.
20.已知:如图,在△ABC中,∠ABC和∠ACB的角平分线相交于点P,且PE⊥AB,PF⊥AC,垂足分别为E、F.
(1)求证:PE=PF;
(2)若∠BAC=60°,连接AP,求∠EAP的度数.
21.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.
(1)求∠CAD的度数;
(2)求证:DE平分∠ADC;
(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.
参考答案
1.解:∵AD平分∠BAC交BC于点D,DE⊥AC,DB⊥AB,
∴DE=DB=2.
故选:C.
2.解:过D点作DF⊥AB于F,如图,
∵AD是∠BAC的平分线,DE⊥AC,DF⊥AB,
∴DF=DE=4,
∴S△ABD=×12×4=24.
故选:C.
3.解:作DH⊥AB于H,如图,
∵AD平分∠BAC,DH⊥AB,DC⊥AC,
∴DH=DC=2,
∵Q为AB上一动点,
∴DQ的最小值为DH的长,即DQ的最小值为2.
故选:B.
4.解:过D点作DH⊥OB于H,如图,
∵OD平分∠AOB,DE⊥AO,DH⊥OB,
∴DH=DE=4.2,
∵F是射线OB上的任一点,
∴DF≥4.2.
故选:A.
5.解:∵AD平分∠CAB,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△ACD和Rt△AED中,

∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
∵AC=BC,
∴BC=AE,
∴△DEB的周长=BD+DE+BE=BD+CD+BE=BC+BE=AE+BE=AB=10.
故选:C.
6.解:过D点作DM⊥AE于M,DN⊥AF于N,DH⊥BC于H,如图,
∵BD,CD分别平分外角∠CBE与∠BCF,
∴DH=DM,DH=DN,
∴DM=DN,
∴AD平分∠BAC,
∴∠BAD=∠CAD.
故选:D.
7.解:过E作EF⊥BC于点F,
∵CD是AB边上的高,BE平分∠ABC,
∴EF=DE=2,
∴S△BCE=BC?EF=×5×2=5,
故选:B.
8.解:∵BE是AC边的中线,
∴AE=CE,
∵△ABE的面积=,△BCE的面积=AB,
∴△ABE的面积=△BCE的面积,故①正确;
∵AD是BC边上的高,
∴∠ADC=90°,
∵∠BAC=90°,
∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,
∴∠FAG=∠ACB,
∵CF是∠ACB的角平分线,
∴∠ACF=∠FCB,∠ACB=2∠FCB,
∴∠FAG=2∠FCB,故②错误;
∵在△ACF和△DGC中,∠BAC=∠ADC=90°,∠ACF=∠FCB,
∴∠AFG=180°﹣∠BAC﹣∠ACF,∠AGF=∠DGC=180°﹣∠ADC﹣∠FCB,
∴∠AFG=∠AGF,
∴AF=AG,故③正确;
根据已知不能推出∠HBC=∠HCB,即不能推出HB=HC,故④错误;
即正确的为①③,
故选:D.
9.解:过D作DG⊥AC于G,
∵AD平分∠BAC,DE⊥AB,
∴DG=DE=2,
∵AB=6,AC=4,
∴S△ABC=AC?BF=S△ABD+S△ACD=AB?DE+AC?DG,
∴×4?BF=×6×2+×4×2,
∴BF=5,
故选:C.
10.解:∵O到三边AB、BC、CA的距离OF=OD=OE,
∴点O是三角形三条角平分线的交点,
∵∠BAC=70°,
∴∠ABC+∠ACB=180°﹣70°=110°,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=×110°=55°,
在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.
故选:C.
11.解:过E作EF⊥AD于F,如图,
∵AB⊥BC,AE平分∠BAD,
∴Rt△AEF≌Rt△AEB
∴BE=EF,AB=AF,∠AEF=∠AEB;
而点E是BC的中点,
∴EC=EF=BE,所以③错误;
∴Rt△EFD≌Rt△ECD,
∴DC=DF,∠FDE=∠CDE,所以②正确;
∴AD=AF+FD=AB+DC,所以④正确;
∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.
故选:A.
12.解:(1)∵∠B=40°,∠E=90°,
∴∠BAE=90°?40°=50°,
∵AC是∠BAE的角平分线,
∴∠BAC=∠BAE=25°;
(2)∵S△ADC=DC?AE,
∴×DC×8=16,
∴DC=4,
∵D是BC的中点,
∴BC=2CD=8.
13.证明:如图,过点E作EF⊥AD于F,
∵DE平分∠ADC,∠C=90°,
∴EC=EF,
∵EB=EC,
∴EF=BE,
又∵∠B=90°,
∴AE是∠DAB平分线.
14.证明:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,
∴PD=PE,
在Rt△OPD和Rt△OPE中,,
∴Rt△OPD≌Rt△OPE(HL),
∴OD=OE,
∵OC是∠AOB的平分线,
∴∠DOF=∠EOF,
在△ODF和△OEF中,,
∴△ODF≌△OEF(SAS),
∴DF=EF.
15.解:AD⊥EF.理由如下:
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△AED和Rt△AFD中,
∵,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵AD平分∠EAF,
∴AD⊥EF(等腰三角形三线合一).
16.(1)证明:∵DE⊥AB于E,DF⊥AC于F,
∴∠E=∠DFC=90°,
∴△BDE与△CDF均为直角三角形,

∴△BDE≌△CDF(HL).
∴DE=DF,即AD平分∠BAC;
(2)AB+AC=2AE.
证明:∵BE=CF,AD平分∠BAC,
∴∠EAD=∠CAD,
∵∠E=∠AFD=90°,
∴∠ADE=∠ADF.
在△AED与△AFD中,
∵,
∴△AED≌△AFD(ASA).
∴AE=AF.
∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.
17.(1)证明:∵AC平分∠BAD,CE⊥AB,CD⊥AD,
∴CD=CE,
在Rt△CBE和Rt△CFD中,

∴Rt△CBE≌Rt△CFD(HL),
∴BE=FD;
(2)解:在Rt△ACD中,
∵AC=10,AD=8,
∴CD==6,
∵AC=AC,CD=CE,
∴Rt△ACD≌Rt△ACE(HL),
∴S△ACD=S△ACE,
∵Rt△CBE≌Rt△CFD,
∴S△CBE=S△CFD,
∴四边形ABCF的面积=S四边形AECD=2S△ACD=2××6×8=48.
18.解:(1)∵BD平分∠ABC,
∴∠DBC=∠ABC=×60°=30°,
∵CD平分∠ACB,
∴∠DCB=∠ACB=×40°=20°,
∴∠BDC=180°﹣∠DBC﹣∠DCB
=180°﹣30°﹣20°
=130°;
(2)作DF⊥AC于F,DH⊥BC于H,如图2,
∵BD平分∠ABC,DE⊥AB,DH⊥BC,
∴DH=DE=2,
∵CD平分∠ACB,DF⊥AC,DH⊥BC,
∴DF=DH=2,
∴△ADC的面积=DF?AC=×2×4=4.
19.(1)证明:过点P作PD⊥AB于D,作PE⊥BC于E,作PF⊥AC于F,
则PD,PE,PF分别是P到AB,BC,CA的距离,
∵AP平分∠CAB,BP平分∠ABC,
∴PD=PF,PD=PE,
∴PF=PE,
∴CP平分∠ACB;
(2)解:∵∠CAB=60°,
∴∠PAB=30°,
在Rt△PAD中,PA=4,
∴PD=2,
∴S△ABC=S△APB+S△BPC+S△CPA
=AB?PD+BC?PE+CA?PF
=(AB+BC+CA)?PD
=×20×2
=20.
20.解:(1)过点P作PD⊥BC于D,
∵∠ABC和∠ACB的角平分线相交于点P,且PE⊥AB,PF⊥AC,
∴PD=PE,PD=PF,
∴PE=PF;
(2)∵PE=PF,PE⊥AB,PF⊥AC,
∴AP平分∠BAC,
∵∠BAC=60°,
∴∠EAP==30°.
21.(1)解:∵EF⊥AB,∠AEF=50°,
∴∠FAE=90°﹣50°=40°,
∵∠BAD=100°,
∴∠CAD=180°﹣100°﹣40°=40°;
(2)证明:过点E作EG⊥AD于G,EH⊥BC于H,
∵∠FAE=∠DAE=40°,EF⊥BF,EG⊥AD,
∴EF=EG,
∵BE平分∠ABC,EF⊥BF,EH⊥BC,
∴EF=EH,
∴EG=EH,
∵EG⊥AD,EH⊥BC,
∴DE平分∠ADC;
(3)解:∵S△ACD=15,
∴×AD×EG+×CD×EH=15,即×4×EG+×8×EG=15,
解得,EG=EH=,
∴EF=EH=,
∴△ABE的面积=×AB×EF=×7×=.