1266190010236200第七章 随机变量及其分布
第七章 随机变量及其分布
知识巩固
知识巩固
知识点一条件概率的概念
知识点一条件概率的概念
一般设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率.
知识点二概率乘法公式
知识点二概率乘法公式
定义:由条件概率的定义,对任意两个事件A与B ,若P(A)>0,则false,我们称上式为概率的乘法公式.
知识点三全概率公式
知识点三全概率公式
设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B?Ω,有P(B)=(Ai)P(B|Ai),我们称该公式为全概率公式.
知识点四随机变量的概念、表示及特征
知识点四随机变量的概念、表示及特征
1.概念:一般地,对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X(ω)与之对应,我们称X为随机变量.
2.表示:用大写英文字母表示随机变量,如X,Y,Z;用小写英文字母表示随机变量的取值,如x,y,z.
3.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:
(1)取值依赖于样本点.
(2)所有可能取值是明确的.
知识点五离散型随机变量的分布列及其性质
知识点五离散型随机变量的分布列及其性质
1.定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,xn,我们称X取每一个值xi的概率P(X=xi)=pi,i=1,2,3,…,n为X的概率分布列,简称分布列.
2.分布列的性质
(1)pi≥0,i=1,2,…,n.
(2)p1+p2+…+pn=1.
知识点六 离散型随机变量的均值
知识点六 离散型随机变量的均值
离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则称E(X)=x1p1+x2p2+…+xipi+…+xnpn=ipi是随机变量X的均值
离散型随机变量的均值的概念
一般地,若离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则称E(X)=x1p1+x2p2+…+xipi+…+xnpn=ipi为随机变量X的均值或数学期望.
离散型随机变量的均值的意义
均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.
离散型随机变量的均值的性质
若Y=aX+b,其中a,b均是常数(X是随机变量),则Y也是随机变量,且有E(aX+b)=aE(X)+b.
证明如下:如果Y=aX+b,其中a,b为常数,X是随机变量,那么Y也是随机变量.因此P(Y=axi+b)=P(X=xi),i=1,2,3,…,n,所以Y的分布列为
Y
ax1+b
ax2+b
…
axi+b
…
axn+b
P
p1
p2
…
pi
…
pn
于是有E(Y)=(ax1+b)p1+(ax2+b)p2+…+(axi+b)pi+…+(axn+b)pn=a(x1p1+x2p2+…+xipi+…+xnpn)+b(p1+p2+…+pi+…+pn)=aE(X)+b,即E(aX+b)=aE(X)+b.
4.离散型随机变量的均值与方差的步骤:
(1 )明确离散型随机变量的取值,以及取每个值的试验结果;
(2 )求出离散型随机变量取各个值的概率;
(3 )列出分布列;
(4)利用公式求出离散型随机变量的均值E(X)与方差D(x).
知识点七超几何分布
知识点七超几何分布
超几何分布的均值
设随机变量X服从超几何分布,则X可以解释为从包含M件次品的N件产品中,不放回地随机抽取n件产品中的次品数.令p=MN , 则p是N件产品的次品率,而是抽取的 n件产品的次品率,则E( Xn )=p,即E(X)=np.
题型探究
题型探究
离散型随机变量的均值与方差
1.均值和方差都是随机变量的重要的数字特征,方差是建立在均值的基础之上,它表明了随机变量所取的值相对于它的均值的集中与离散程度,二者的联系密切,在现实生产生活中的应用比较广泛.
2.掌握均值和方差的计算,重点提升逻辑推理和数据分析的核心素养.
离散型随机变量的均值与方差
1.均值和方差都是随机变量的重要的数字特征,方差是建立在均值的基础之上,它表明了随机变量所取的值相对于它的均值的集中与离散程度,二者的联系密切,在现实生产生活中的应用比较广泛.
2.掌握均值和方差的计算,重点提升逻辑推理和数据分析的核心素养.
例 某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?
解 (1)由已知得,小明中奖的概率为,小红中奖的概率为,两人中奖与否互不影响,记“这2人的累计得分X≤3”的事件为A,则A事件的对立事件为“X=5”.
∵P(X=5)=×=,
∴P(A)=1-P(X=5)=,
∴这两人的累计得分X≤3的概率为.
(2)设小明、小红都选择方案甲抽奖中奖的次数为X1,都选择方案乙抽奖中奖的次数为X2,则这两人选择方案甲抽奖累计得分的均值为E(2X1),选择方案乙抽奖累计得分的均值为E(3X2),
由已知,X1~B,X2~B,
∴E(X1)=2×=,E(X2)=2×=.
∴E(2X1)=2E(X1)=,E(3X2)=3E(X2)=.
E(2X1)>E(3X2),他们都选择方案甲进行抽奖时,累计得分的均值最大.
正态分布
1.正态分布是连续型随机变量X的一种分布,其在概率和统计中占有重要地位,尤其统计学中的3σ原则在生产生活中有广泛的应用.
2.熟记正态分布的特征及应用3σ原则解决实际问题是本章的两个重点,在学习中提升直观想象、数据分析的素养.
正态分布
1.正态分布是连续型随机变量X的一种分布,其在概率和统计中占有重要地位,尤其统计学中的3σ原则在生产生活中有广泛的应用.
2.熟记正态分布的特征及应用3σ原则解决实际问题是本章的两个重点,在学习中提升直观想象、数据分析的素养.
例 在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似地服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有12人.
(1)试问此次参赛学生的总数约为多少人?
(2)若成绩在80分以上(含80分)为优,试问此次竞赛成绩为优的学生约为多少人?
解 (1)设参赛学生的成绩为X,因为X~N(70,100),
所以μ=70,σ=10.
则P(X≥90)=P(X≤50)=[1-P(50=[1-P(μ-2σ=0.022 75,
12÷0.022 75≈527(人).
因此,此次参赛学生的总数约为527人.
(2)由P(X≥80)=P(X≤60)=[1-P(60=[1-P(μ-σ=0.158 65,
527×0.158 65≈84(人).
因此,此次竞赛成绩为优的学生约为84人.