第六章 计数原理(知识梳理)-【新教材】2020-2021学年人教A版(2019)高中数学选择性必修第三册(Word含答案)

文档属性

名称 第六章 计数原理(知识梳理)-【新教材】2020-2021学年人教A版(2019)高中数学选择性必修第三册(Word含答案)
格式 docx
文件大小 55.1KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2021-08-08 15:02:01

图片预览

文档简介

第六章计数原理
第六章计数原理
知识巩固
知识巩固
考点一分类加法计数原理
考点一分类加法计数原理
完成一件事有两类不同方案
在第1类方案中有m种不同的方法
在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.
考点二 分步乘法计数原理
考点二 分步乘法计数原理
完成一件事需要两个步骤
做第1步有m种不同的方法
做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.
知识点三排列数的定义
知识点三排列数的定义
排列的定义-----一般地,从n 个不同元素中取出m(m≤n)个元素,并按照一一定的 顺序排成一列, 叫做从n个不同元素中取出m个元素的一个排列
排列数的定义:
从n 个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号false表示
知识点四排列数公式及全排列
知识点四排列数公式及全排列
1.排列数公式的两种形式
(1)A=n(n-1)(n-2)…(n-m+1),其中m,n∈N*,并且m≤n.
(2)A=.
2.全排列:把n个不同的元素全部取出的一个排列,叫做n个元素的一个全排列,全排列数为A=n!(叫做n的阶乘).规定:0!=1.
知识点五组合数公式
知识点五组合数公式
组合数
公式
乘积
形式
C=,
其中m,n∈N*,并且m≤n

阶乘
形式
C=
规定:C=1.
知识点六:二项式定理
知识点六:二项式定理
(a+b)n=Can+Can-1b+Can-2b2+…+Can-kbk+…+Cbn(n∈N*).
(1)这个公式叫做二项式定理.
(2)展开式:等号右边的多项式叫做(a+b)n的二项展开式,展开式中一共有n+1项.
(3)二项式系数:各项的系数C(k∈{0,1,2,…,n})叫做二项式系数.
知识点七:二项式系数的性质
知识点七:二项式系数的性质
对称性
在(a+b)n的展开式中,与首末两端“等距离”的两个二项式系数相等,即C=C
增减性
与最
大值
增减性:当k<时,二项式系数是逐渐增大的;当k>时,二项式系数是逐渐减小的.最大值:当n为偶数时,中间一项的二项式系数false最大;当n为奇数时,中间两项的二项式系数false,false相等,且同时取得最大值
各二项
式系数
的和
(1)C+C+C+…+C=2n;
(2)C+C+C+…=C+C+C+…=2n-1
题型探究
题型探究
两个计数原理
1.分类加法计数原理和分步乘法计数原理是本章内容的学习基础,在进行计数过程中,常因分类不明导致增(漏)解,因此在解题中既要保证类与类的互斥性,又要关注总数的完备性.
2.掌握两个计数原理,提升逻辑推理和数学运算素养.
两个计数原理
1.分类加法计数原理和分步乘法计数原理是本章内容的学习基础,在进行计数过程中,常因分类不明导致增(漏)解,因此在解题中既要保证类与类的互斥性,又要关注总数的完备性.
2.掌握两个计数原理,提升逻辑推理和数学运算素养.
例现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一颜色,且绿色卡片至多1张,则不同的取法种数为(  )
A.484 B.472
C.252 D.232
答案 B
解析 根据题意,共有C种取法,其中每一种卡片各取3张,有4C种取法,取2张绿色卡片有C·C种取法,故所求的取法共有C-4C-C·C=472(种).
(2)车间有11名工人,其中5名男工是钳工,4名女工是车工,另外两名老师傅既能当车工又能当钳工,现在要在这11名工人里选派4名钳工,4名车工修理一台机床,则有多少种选派方法?
解 方法一 设A,B代表2位老师傅.
A,B都不在内的选派方法有CC=5(种),
A,B都在内且当钳工的选派方法有CCC=10(种),
A,B都在内且当车工的选派方法有CCC=30(种),
A,B都在内且一人当钳工,一人当车工的选派方法有ACC=80(种),
A,B有一人在内且当钳工的选派方法有CCC=20(种),
A,B有一人在内且当车工的选派方法有CCC=40(种),
所以共有CC+CCC+CCC+ACC+CCC+CCC=185(种)选派方法.
方法二 5名男钳工有4名被选上的方法有CC+CCC+CCC=75(种),
5名男钳工有3名被选上的方法有CCC+CCA=100(种),
5名男钳工有2名被选上的方法有CCC=10(种),
所以共有75+100+10=185(种)选派方法.
方法三 4名女车工都被选上的方法有CC+CCC+CCC=35(种),
4名女车工有3名被选上的方法有CCC+CCA=120(种),
4名女车工有2名被选上的方法有CCC=30(种),
所以共有35+120+30=185(种)选派方法.
排列与组合的综合应用
1.排列、组合是两类特殊的计数求解方式,在计数原理求解中起着举足轻重的作用,解决排列与组合的综合问题要树立先选后排,特殊元素(特殊位置)优先的原则.
2.明确排列和组合的运算,重点提升数学建模及数学运算的素养.
排列与组合的综合应用
1.排列、组合是两类特殊的计数求解方式,在计数原理求解中起着举足轻重的作用,解决排列与组合的综合问题要树立先选后排,特殊元素(特殊位置)优先的原则.
2.明确排列和组合的运算,重点提升数学建模及数学运算的素养.
例在高三(1)班元旦晚会上,有6个演唱节目,4个舞蹈节目.
(1)当4个舞蹈节目要排在一起时,有多少种不同的节目安排顺序?
(2)当要求每2个舞蹈节目之间至少安排1个演唱节目时,有多少种不同的节目安排顺序?
(3)若已定好节目单,后来情况有变,需加上诗朗诵和快板2个节目,但不能改变原来节目的相对顺序,有多少种不同的节目演出顺序?
解 (1)第一步先将4个舞蹈节目捆绑起来,看成1个节目,与6个演唱节目一起排,有A=5 040(种)方法;第二步再松绑,给4个舞蹈节目排序,有A=24(种)方法.
根据分步乘法计数原理,一共有5 040×24=120 960(种)安排顺序.
(2)第一步将6个演唱节目排成一列(如图中的“□”),一共有A=720(种)方法.
×□×□×□×□×□×□×
第二步再将4个舞蹈节目排在一头一尾或两个节目中间(即图中“×”的位置),这样相当于7个“×”选4个来排,一共有A=840(种)方法.
根据分步乘法计数原理,一共有720×840= 604 800(种)安排顺序.
(3)若所有节目没有顺序要求,全部排列,则有A种排法,但原来的节目已定好顺序,需要消除,所以节目演出的顺序有=A=132(种).