11.1.2:三角形的稳定性
1.要使五边形木架(用false根木条钉成)不变形,至少要再钉上( )根木条.
A.false B.false C.false D.false
2.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是( ).
A.三角形的稳定性 B.长方形的对称性
C.长方形的四个角都是直角 D.两点之间线段最短
3.下列四个图形,具有稳定性的有( )
A.1个 B.2个 C.3个 D.4个
4.下列图形中不具有稳定性的是( )
A. B. C. D.
5.如图,盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是( )
A.两点之间,线段最短 B.三角形的稳定性
C.长方形的四个角都是直角 D.四边形的稳定性
6.要使四边形木架(用四根木条钉成)不变形,至少要再钉上几根木条( )
A.1 B.2 C.3 D.4
7.下列图形中有稳定性的是( )
A.正方形 B.长方形 C.直角三角形 D.平行四边形
8.下列图形不具有稳定性的是( )
A. B. C. D.
9.下列图形具有稳定性的是( )
A. B. C. D.
10.如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是( )
A.两点之间线段最短 B.长方形的四个角都是直角
C.长方形是轴对称图形 D.三角形具有稳定性
11.下列图形具有稳定性的是( )。
A.三角形 B.正方形 C.长方形 D.梯形
12.如图,工人师傅砌门时,常用木条 EF 固定长方形门框,使其不变形,这样做的根据是( )
A.三角形具有稳定性 B.两点确定一条直线 C.两点之间线段最短 D.三角形内角和 180°
13.下列图形具有稳定性的是( )
A. B. C. D.
14.下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加(????? )个螺栓
A.1 B.2 C.3 D.4
15.如图,窗户打开后,用窗钩false可将其固定,其所运用的几何原理是( )
A.三角形的稳定性 B.垂线段最短
C.两点确定一条直线 D.两点之间,线段最短
16.下列图形中,没有利用三角形的稳定性的是( )
A. B. C. D.
17.下面图形是用木条钉成的支架,其中不容易变形的是( )
A. B. C. D.
18.在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是( )
A.电动伸缩门 B.升降台
C.栅栏 D.窗户
19.下列图形中不具有稳定性的是(??? )
A.???????????????B.???????????????C.??? D.
20.如图,木匠在做门框时防止门框变形,用一根木条斜着钉好,这样门框就固定了,所运用的数学道理是______________.
21.如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的_________性。
22.如图,工程建筑中的屋顶钢架经常采用三角形的结构,其中的数学道理是_____.
23.2019年10月1日是祖国70生日,在国庆长假期间小壮一家去影院看电影《我和我的祖国》,乘地铁时爸爸站在晃动的地铁上,为了安全他分开两腿站立,还伸出一只手去抓住栏杆才能站稳,爸爸这样做的数学道理是__________.
24.如图,要使四边形木架不变形,至少要钉上______ 根木条.
25.人字梯中间一般会设计一”拉杆”,这样做的数学道理是____________.
26.要使五边形木架(用5根木条钉成)不变形,至少要再钉__________根木条.
27.法国埃菲尔铁塔的塔身是由许多三角形构成的,设计师运用的几何原理是____________.
28.如图,工人师傅制作门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是___________________________.
29.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的_____.
30.人站在晃动的公共汽车上.若你分开两腿站立,则需伸出一只手去抓栏杆才能站稳,这是利用了________.
31.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样做的数学道理是________?.
32.屋顶钢架经常采用三角形结构,运用的几何原理是_____.
33.下列图中哪些具有稳定性?________.
34.如图,自行车的主框架采用了三角形结构,这样设计的依据是三角形具有______.
35.被外界赞誉为世界奇迹的港珠澳大桥(下图),是连接香港、珠海、澳门的超大型跨海通道,全长55公里,无论从施工难度,还是从施工的复杂度,甚至从施工周期的长短来看,都足以配得上这样的称赞.
(1)观察大桥图形,有好多的拉线,这些拉线和大桥的其他部位组成的图形形状是三角形,这样设计是利用了三角形的 ;
(2)用八根木条钉成的如图所示的八边形木架,要使它不变形,至少要再钉 根木条,在图上画出来.
36.要使四边形木架(用四根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?n边形木架呢?
37.如图,ABCD是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE,小明的做法正确吗?说说你的理由.
38.木工师傅在做完门框后为防止变形,常像下图中所示的那样,钉上两条斜的木条,即图中的AB,CD两个木条,这是根据数学上什么原理?
39.请举出日常生活中利用四边形不稳定性的一些例子.
40.如图这是一个由七根长度相等木条钉成的七边形木框.为使其稳定,请用四根木条(长短不限)将这个木框固定不变形,请你设计出三种方案.
41.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接,设计出两种不同的连接方案(用直尺连接).
42.小辉用7根木条钉成一个七边形的木架,他为了使该木架稳固,想在其中加上四根木条,请你在图1、2、3中画出你的三种想法,并说明加上木条后使该木架稳固所用的数学道理.
?
43.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳固性、美观性、实用性等因素,需再加竹条与其顶点连接.要求:
(1)在图(1)、(2)中分别加适当根竹条,设计出两种不同的连接方案.
(2)通过上面的设计,可以看出至少需再加 根竹条,才能保证风筝骨架稳固、美观和实用.
(3)在上面的方案设计过程中,你所应用的数学道理是.
44.如图(1)扭动三角形木架, 它的形状会改变吗?
如图(2)扭动四边形木架, 它的形状会改变吗?
如图(3)斜钉一根木条的四边形木架的形状形状会改变吗?为什么?
归纳:①三角形木架的形状______,说明三角形具有______;
②四边形木架的形状______说明四边形没有______.
参考答案
1.B
【解析】利用三角形的稳定性分析即可得.
【解答】因为三角形具有稳定性,有着稳固、坚定、耐压的特点,所以将五边形木架钉上2根木条,变成由三个三角形组成,就能使其不变形,如图所示:
故选:B.
【点评】本题考查了三角形的稳定性,掌握理解三角形的稳定性原理是解题关键.
2.A
【解析】根据三角形具有稳定性进行解答.
【解答】用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:A.
【点评】本题考查三角形具有稳定性在实际生活中的应用,解题的关键是知道三角形的稳定性在实际生活中有着广泛的应用.
3.B
【解析】根据三角形具有稳定性一一判断即可.
【解答】根据三角形具有稳定性易知(1)(4)选项正确,
故选B.
【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性这一性质是解题的关键.
4.B
【解析】三角形具有稳定性,根据三角形的性质,四边形的性质可得答案.
【解答】解:B选项中含有长方形属于四边形,不具有稳定性,而三角形具有稳定性,故B符合题意;
故选:B.
【点评】本题考查了多边形和三角形的稳定性,解决问题的关键是利用了四边形的不稳定性.
5.B
【解析】
【解析】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,据此即可判断.
【解答】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,利用了三角形的稳定性.
故选B.
【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.
6.A
【解析】根据三角形具有稳定性可得:沿对角线钉上1根木条即可.
【解答】解:根据三角形的稳定性可得,至少要再钉上1根木条.
故选:A.
【点评】本题考查了三角形的稳定性,属于简单题,熟悉三角形的稳定性是解题关键.
7.C
【解析】根据三角形稳定性即可得答案.
【解答】三角形具有稳定性,有着稳固、坚定、耐压的特点;而四边形不具有稳定性,易于变形.四个选项中,只有C选项是三角形,其他三个选项均为四边形,故答案为C.
【点评】本题考查的知识点是三角形稳定性.
8.B
【解析】
【解析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.
【解答】解:根据三角形的稳定性可得A、C、D都具有稳定性,不具有稳定性的是B选项.
故选:B.
【点评】本题考查三角形的稳定性,关键在于熟记三角形具有稳定性的特征.
9.A
【解答】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得.
【详解】A、具有稳定性,符合题意;
B、不具有稳定性,故不符合题意;
C、不具有稳定性,故不符合题意;
D、不具有稳定性,故不符合题意,
故选A.
【点睛】本题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.
10.D
【解析】根据题目中为防止变形的做法,显然运用了三角形的稳定性.
【解答】为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的稳定性.
【点评】本题考查了三角形的稳定性,能够运用数学知识解释生活中的现象.
11.A
【解析】根据三角形具有稳定性,四边形具有不稳定性进行判断.
【解答】三角形具有稳定性.
故选:A.
【点评】此题考查了三角形的稳定性和四边形的不稳定性.属于基础知识,只需记住三角形的稳定性即可解答.
12.A
【解析】当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.根据三角形的稳定性,可直接选择.
【解答】加上EF后,原图形中具有△AEF了,
故这种做法根据的是三角形的稳定性.
故选A.
【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.
13.A
【解析】根据三角形具有稳定性,四边形具有不稳定性进行判断.
【解答】因为三角形具有稳定性.
故选:A.
【点评】此题考查三角形的稳定性和四边形的不稳定性.解题关键在于掌握其性质.
14.A
【解析】用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释.
【解答】
如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边
故答案为:A.
【点评】本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键.
15.A
【解析】根据点A、B、O组成一个三角形,利用三角形的稳定性解答.
【解答】解:一扇窗户打开后,用窗钩将其固定,正好形成三角形的形状,
所以,主要运用的几何原理是三角形的稳定性.
故答案选A.
【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.
16.C
【解析】根据三角形的稳定性解答即可.
【解答】解:选项C中闸门上没有三角形,其余A、B、D选项中都含有三角形,
由三角形的稳定性可知,选项C中没有利用三角形的稳定性,
故选:C.
【点评】本题考查了三角形的稳定性,正确的理解题意是解题的关键.
17.B
【解析】
含有三角形结构的支架不容易变形,只有B选项的图形中有三角形支架,
故选B.
18.C
【解析】
【解析】根据三角形具有稳定性和四边形具有不稳定性进行辨别即可.
【解答】A. 由平行四边形的特性可知,平行四边形具有不稳定性,所以容易变形,伸缩门运用了平行四边形易变形的特性;
B. 升降台也是运用了四边形易变形的特性;
C.栅栏是由一些三角形焊接而成的,它具有稳定性;
D.窗户是由四边形构成,它具有不稳定性.
故选C.
【点评】此题主要考查了平行四边形的特性是容易变形以及三角形具有稳定性.
19.B
【解析】根据三角形具有稳定性,四边形不具有稳定性即可判断.
【解答】因为三角形具有稳定性,四边形不具有稳定性,
所以,ACD、都是有若干个三角形构成,具有稳定性,正确,不符合题意;
B、由一个三角形和一个四边形构成,四边形不具有稳定性,错误,符合题意.
故答案为:B.
【点评】本题考查三角形的稳定性,解题的关键是灵活运用所学知识解决问题.
20.三角形的稳定性
【解析】用一根木条斜着钉好之后就会出现一个三角形,根据三角形的稳定性即可得到答案.
【解答】用一根木条斜着钉好之后就会出现一个三角形,因为三角形具有稳定性,所以门框就会固定了.
故答案为:三角形的稳定性.
【点评】本题主要考查三角形的稳定性,掌握三角形稳定性的应用是解题的关键.
21.稳定
【解析】根据三角形具有稳定性可直接得出答案.
【解答】解:把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的稳定性,
故答案为:稳定.
【点评】本题考查了三角形的稳定性,解题的关键是了解三角形具有稳定性,属于基础题,难度不大.
22.三角形具有稳定性
【解析】根据三角形具有稳定性解答即可.
【解答】解:工程建筑中经常采用三角形的结构,其中的数学道理是三角形具有稳定性,
故答案为:三角形具有稳定性.
【点评】此题主要考查了三角形的稳定性,熟知相关性质是解题的关键.
23.三角形具有稳定性.
【解析】根据三角形具有稳定性作答.
【解答】解:乘地铁时爸爸站在晃动的地铁上,为了安全他分开两腿站立(把站立的两脚看成是两个点),还伸出一只手(把手看成是一个点)去抓住栏杆才能站稳,爸爸这样做的数学道理是:三角形具有稳定性.
故答案为:三角形具有稳定性.
【点评】本题考查了三角形的稳定性在实际生活中的应用,属于基础知识,正确理解题意是关键.
24.1
【解析】当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.
【解答】解:根据三角形具有稳定性,在四边形的对角线上添加一根木条即可.
故答案为1.1
【点评】本题主要考查了三角形的稳定性,解题时注意:三角形具有稳定性,这一特性主要应用在实际生活中.
25.三角形具有稳定性
【解析】根据三角形的稳定性解答即可.
【解答】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,
故答案为三角形具有稳定性.
【点评】此题考查三角形的性质,关键是根据三角形的稳定性解答.
26.2根
【解析】
试题分析:因为三角形具有稳定性,所以钉2根木条,可把五边形分成3个三角形即可.
考点:三角形的稳定性.
27.三角形的稳定性
【解析】
【分析】根据三角形的稳定性进行解答即可.
【详解】法国埃菲尔铁塔的塔身是由许多三角形构成的,设计师运用的几何原理是三角形的稳定性,
故答案为三角形的稳定性.
【点睛】本题考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
28.三角形具有稳定性
【解析】
试题分析:主要考察三角形的稳定性在生活中的应用.
考点:三角形的稳定性
29.稳定性
【解析】
试题解析:加固后构成三角形的形状,利用了三角形的稳定性.
故答案为稳定性.
30.三角形的稳定性
【解析】
试题分析:根据三角形具有稳定性解答.
解:分开两腿站立与抓栏杆的手成三角形形状,
利用了三角形的稳定性.
故答案为三角形的稳定性.
31.三角形的稳定性
【解析】在窗框上斜钉一根木条,构成三角形,故可用三角形的稳定性解释.
【解答】盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性,
故答案为三角形的稳定性.
【点评】本题考查了三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.
32.三角形的稳定性.
【解析】根据三角形的稳定性解答即可.
【解答】屋顶钢架经常采用三角形结构,运用的几何原理是三角形的稳定性,
故答案为:三角形的稳定性.
【点评】本题考查三角形的稳定性,熟知三角形具有稳定性是解题关键.
33.(1)(6)
【解析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.
【解答】解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.
显然具有稳定性的有:(1)(6)
故答案为:(1)(6).
【点评】考查了三角形的稳定性及多边形的知识,注意根据三角形的稳定性进行判断.
34.稳定性.
【解析】本题考查形状对结构的影响,三角形结构具有较好的强度和稳定性.
【解答】三角形结构具有较好的稳定性.
故答案为稳定性.
【点评】本题考查了形状对结构的影响,解题的关键是熟练的掌握三角形形状对结构的影响.
35.(1)稳定性 ;(2)5 ,图见解析
【解析】(1)根据三角形稳定性,即可回答;
(2)通过添加辅助线,构造三角形,再确定答案即可.
【解答】(1)稳定性;
(2)5 ,答案不唯一:参考答案如图
【点评】三角形的稳定性在生产生活中具有广泛应用,要善于观察,体会.
36.至少要再钉上(n﹣3)根木条,使多边形变成(n﹣2)个三角形
【解析】试题分析:利用三角形的稳定性及多边形的对角线相关知识即可解答.
解:四边形木架,至少要再钉上1根木条,使四边形变成两个三角形;
五边形木架,至少要再钉上2根木条,使五边形变成3个三角形;
六边形木架,至少要再钉上3根木条,使六边形变成4个三角形;
n边形木架,至少要再钉上(n﹣3)根木条,使多边形变成(n﹣2)个三角形.
37.小明的做法正确,理由见解析.
【解析】
试题分析:根据三角形的稳定性可得出答案.
小明的做法正确,
理由:由三角形的稳定性可得出,四边形ABCD不再变形.
38.三角形的稳定性
【解答】试题分析:用木条固定门框,即是组成三角形,故可用三角形的稳定性解释.
如图加上AB,CD两个木条后,可形成两个三角形,防止门框变形.故这种做法根据的是三角形的稳定性.
39.电动推拉门就是利用四边形不稳定性.
【解析】根据四边形的性质具有不稳定性的特征来解题即可.
【解答】电动推拉门就是利用四边形不稳定性.
【点评】本题考查了四边形的性质之一:不稳定性,四边形的这个特征和三角形正好形成鲜明的对照,三角形具有稳定性,在日常生活中都有大量的应用.
40.见解析
【解析】
三种方案如图所示:
41.图形见解析
【解析】
试题分析:根据三角形的稳定性,并利用轴对称即可设计出方案. 本题为开放题答案不唯一.
解:所设计连接方案画图形如下所示:
点睛:本题主要考查三角形的稳定性及轴对称相关知识.解题的关键要利用三角形的稳定性并结合轴对称来设计方案.
42.答案见解析.
【解析】
试题分析:根据三角形具有稳定性进行画图即可.
解:如图所示:
?
43.(1)答案见解析;(2)三;(3)三角形的稳定性.
【解答】解:(1)如图所示(答案不唯一)
(2)至少要三根
故答案为:三;
(3)三角形的稳定性.
44.图(1)扭动三角形木架, 它的形状不会改变,因为三角形具有稳定性;
图(2)扭动四边形木架, 它的形状会改变,四边形不稳定;
图(3)斜钉一根木条的四边形木架的形状形状不会改变,四边形变成两个三角形,三角形具有稳定性;
归纳:①是三角形, 稳定性;②四边形, 稳定性 .
【解析】①根据三角形的稳定性进行解答即可;
②根据四边形的不稳定性进行解答即可.
【解答】图(1)扭动三角形木架, 它的形状不会改变,因为三角形具有稳定性;
图(2)扭动四边形木架, 它的形状会改变,四边形不稳定;
图(3)斜钉一根木条的四边形木架的形状形状不会改变,四边形变成两个三角形,三角形具有稳定性;
归纳:
①由三角形具有稳定性知, 三角形木架的形状不会改变, 这说明三角形具有稳定性 .
故答案为: 是三角形, 稳定性;
②四边形木架的形状是四边形, 四边形具有不稳定性 .
故答案为: 四边形, 稳定性 .
【点评】本题考查的是三角形的稳定性,三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,比较简单.