第二章 直线和圆的方程
2.3.4两条平行直线间的距离
教学设计
一、教学目标
1.掌握两条平行直线间的距离的求法.
2.会把两条平行直线间的距离转化为点到直线的距离,体会数学中的转化思想.
3.理解两条平行直线间的距离的意义,并会简单应用.
二、教学重难点
1、教学重点
两条平行直线间的距离.
2、教学难点
两条平行直线间的距离的应用.
三、教学过程
1、新课导入
在生活中常见的平行线有哪些?铁轨、课本两边,教室门的两边……那么我们该如何求解两条平行线之间的距离呢,在求解的过程中,需要注意哪些问题,这节课我们就来深入学习一下求两条平行直线间的距离.
2、探索新知
两条平行直线间的距离是指夹在这两条平行直线间的公垂线段的长.
思考:已知两条平行直线l1,l2的方程,如何求l1与l2间的距离?
根据两条平行直线间距离的含义,在直线l1上任取一点false,点false到直线l2的距离就是直线l1与直线l2间的距离. 这样,求两条平行直线间的距离就转化为求点到直线的距离.
例1 已知两条平行直线false,false,求l1与l2间的距离.
分析:在l1上选取一点,如l1与坐标轴的交点,用点到直线的距离公式求这点到l2的距离,即l1与l2间的距离.
解:先求l1与x轴的交点A的坐标. 容易知道,点A的坐标为false.
点A到直线l2的距离false.
例2 求证:两条平行直线false与false间的距离为false.
分析:两条平行直线间的距离即为这两条平行直线中的一条直线上的一点到另一条直线的距离.
证明:在直线false上任取一点false,
点false到直线false的距离就是这两条平行直线间的距离,
即false
因为点false在直线false上,
所以false,即false,
因此false.
3、课堂练习
2.已知直线false与直线false平行,则false与false的距离为( )
A.false B.false C.false D.false
答案:D
解析:由false得,false,因此false,false,故选D.
5.P,Q分别为直线false与false上任意一点,则false的最小值为( )
A.false B.false C.false D.false
答案:C
解析:直线false与false平行,故false的最小值即两平行直线之间的距离,即false.
7.若两条平行直线false与false间的距离是false,则false( )
A.0 B.1 C.false D.false
答案:C
解析:因为false,所以false,解得false,false,即直线false,所以两直线间的距离false,又false,所以false,所以false,故选C.
12.已知直线false和直线false,若直线到直线false的距离与到直线false的距离之比为false,则直线l的方程为_______.
答案:false或false
解析:直线false的方程可化为false,易知false,且直线l与直线false,false平行,所以设直线l的方程为false(false且false),由题意,可得false,解得false或false.故直线l的方程为false或false,即false或false.
4、小结作业
小结:本节课学习了两条平行直线间的距离的求法及其简单应用.
作业:完成本节课课后习题.
四、板书设计
2.3.4两条平行直线间的距离
1.两条平行直线间的距离是指夹在这两条平行直线间的公垂线段的长.
2.两条平行直线false与false间的距离为false.