第三章
第二节
代数式
一、选择题(共5小题;共25分)
1.
计算
的结果为
A.
B.
C.
D.
2.
某人按定期两年向银行储蓄
元,假定年利率为
,到期支取时,扣除利息所得税(税率为
),此人实得利息为
A.
元
B.
元
C.
元
D.
元
3.
下列每对数中,相等的一对是
A.
和
B.
和
C.
和
D.
和
4.
下列各式,代数式的个数是
①
;
②
;
③
;
④
;
⑤
;
⑥
;
⑦
;
⑧
;
⑨
.
A.
个
B.
个
C.
个
D.
个
5.
苹果的单价为
元
千克,香蕉的单位为
元
千克,买
千克苹果和
千克香蕉共需
A.
元
B.
元
C.
元
D.
元
二、填空题(共7小题;共35分)
6.
若一个长方形的周长为
厘米,宽为
厘米,则长方形的长为
?
厘米.
7.
已知正方形的长为
,用
表示正方形的周长是
?.
8.
水笔每支
元,笔记本每本
元,小明买了
支水笔,
本笔记本,总共应付
?元(用含
,
的代数式表示).
9.
李卫家养的母鸡是公鸡的
倍.如果养了
只公鸡,那么母鸡有
?只,母鸡和公鸡一共有
?只,母鸡比公鸡多
?只.
10.
某班
名学生在一次数学测验中的成绩以
分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:,,,,,则他们的平均成绩是
?
分.
11.
请用代数式表示“比
的
倍小
的数”:
?.
12.
长方形宽为
,长比宽的
倍大
,则长方形的周长为
?.
三、解答题(共5小题;共90分)
13.
如图所示,在长方形
中,放入
个形状和大小都相同的小长方形,已知小长方形的长为
,宽为
,且
.
(1)用含
,
的代数式表示长方形
的长
、宽
;
(2)用含
,
的代数式表示阴影部分的面积.
14.
请回答下列问题:
(1)某服装店举办促销活动,促销的方法是将原价
元的衣服以七折出售,再让利
元,用字母
表示服装店衣服的现价;
(2)某服装店举办促销活动,打八折后的售价是
元,试用
表示原价.
15.
当
,,
时,求代数式
的值.
16.
当
,
时,求
的值.
17.
请你用实例解释下列代数式的意义:
(1);
(2).
答案
1.
B
【解析】.
2.
C
3.
A
【解析】A.,,两数相等,符合题意;
B.,,两数不相等,不符合题意;
C.,,两数不相等,不符合题意;
D.,,两数不相等,不符合题意.
故选A.
4.
B
【解析】根据代数式的定义,可知①、④、⑤、⑥、⑧都是代数式,一共
个.
5.
C
6.
7.
8.
9.
,,
10.
【解析】
,
.
11.
12.
13.
(1)
;
.
??????(2)
.
14.
(1)
.
??????(2)
.
15.
当
时,;
当
时,;
当
时,.
16.
.
17.
(1)
答案不唯一,言之有理即可.
表示每支笔
元,每本笔记本
元,购买
支笔与
本笔记本的费用.
??????(2)
答案不唯一,言之有理即可.
表示一辆车的行驶速度为
,
小时行驶的路程.
第1页(共3
页)