全概率公式、贝叶斯公式
一、选择题
1.设甲乘汽车、火车前往某目的地的概率分别为0.6,0.4,汽车和火车正点到达目的地的概率分别为0.9,0.8.则甲正点到达目的地的概率为( )
A.0.72 B.0.96 C.0.86 D.0.84
2.播种用的一等小麦种子中混有2%的二等种子,1.5%的三等种子,1%的四等种子.用一、二、三、四等种子长出的穗含50颗以上麦粒的概率分别为0.5,0.15,0.1,0.05,则这批种子所结的穗含50颗以上麦粒的概率为( )
A.0.8 B.0.832 5 C.0.532 5 D.0.482 5
3.设某医院仓库中有10盒同样规格的X光片,已知其中有5盒、3盒、2盒依次是甲厂、乙厂、丙厂生产的.且甲、乙、丙三厂生产该种X光片的次品率依次为,,,现从这10盒中任取一盒,再从这盒中任取一张X光片,则取得的X光片是次品的概率为( )
A.0.08 B.0.1 C.0.15 D.0.2
4.一道考题有4个答案,要求学生将其中的一个正确答案选择出来.某考生知道正确答案的概率为,而乱猜正确的概率为.在乱猜时,4个答案都有机会被他选择,如果他答对了,则他确实知道正确答案的概率是( )
A. B. C. D.
5.某卡车为乡村小学运送书籍,共装有10个纸箱,其中5箱英语书、2箱数学书、3箱语文书. 到目的地时发现丢失一箱,但不知丢失哪一箱. 现从剩下9箱中任意打开两箱,结果都是英语书,则丢失的一箱也是英语书的概率为( )
A. B. C. D.
二、填空题
6.根据以往的临床记录,某种诊断癌症的试验有如下的效果:若以A表示事件“试验反应为阳性”,以C表示事件“被诊断者患有癌症”,则有P(A|C)=0.95,P(|)=0.95,现在对自然人群进行普查, 设被试验的人患有癌症的概率为0.005, 即P(C)=0.005, 则P(C|A)=______.(精确到0.001)
7.一个盒子中装有15个乒乓球,其中9个新球,在第一次比赛时任意抽取3只,比赛后仍放回原盒中;在第二次比赛时同样地任取3只球,则第二次取出的3个球均为新球的概率为________.
8.电报发射台发出“·”和“–”的比例为5∶3,由于干扰,传送“·”时失真的概率为,传送“–”时失真的概率为,则接受台收到“·”时发出信号恰是“·”的概率为________.
三、解答题
9.设甲盒有3个白球,2个红球,乙盒有4个白球,1个红球,现从甲盒任取2球放入乙盒,再从乙盒任取两球,求:
(1)从乙盒取出2个红球的概率;
(2)已知从乙盒取出2个红球,求从甲盒取出两个红球的概率.
10.设5支枪中有2支未经试射校正,3支已校正.一射手用校正过的枪射击,中靶率为0.9,用未校正过的枪射击,中靶率为0.4.
(1)该射手任取一支枪射击,中靶的概率是多少?
(2)若任取一支枪射击,结果未中靶,求该枪未校正的概率.
素养达标
1.(多选题)在某一季节,疾病D1的发病率为2%,病人中40%表现出症状S,疾病D2的发病率为5%,其中18%表现出症状S,疾病D3的发病率为0.5%,症状S在病人中占60%.则( )
A.任意一位病人有症状S的概率为0.02
B.病人有症状S时患疾病D1的概率为0.4
C.病人有症状S时患疾病D2的概率为0.45
D.病人有症状S时患疾病D3的概率为0.25
2.从数字1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个整数,记为Y,则P(Y=2)=( )
A. B. C. D.
3.人们为了解一支股票未来一定时期内价格的变化, 往往会去分析影响股票价格的基本因素, 比如利率的变化. 现假设人们经分析估计利率下调的概率为60%, 利率不变的概率为40%. 根据经验, 人们估计, 在利率下调的情况下, 该支股票价格上涨的概率为80%,而在利率不变的情况下, 其价格上涨的概率为40%, 则该支股票将上涨的概率为________.
4.某仓库有同样规格的产品12箱,其中6箱、4箱、2箱依次是由甲、乙、丙三个厂生产的,且三个厂的次品率分别为,,.现从这12箱中任取一箱,再从取得的一箱中任意取出一个产品.
(1)则取得的一个产品是次品的概率为________.
(2)若已知取得一个产品是次品,则这个次品是乙厂生产的概率是________.(精确到0.001)
5.某人忘记了电话号码的最后一位数字,因而他随意地拨号.求他拨号不超过三次而接通电话的概率.若已知最后一位数字是奇数,那么此概率又是多少?
一、选择题
1.设甲乘汽车、火车前往某目的地的概率分别为0.6,0.4,汽车和火车正点到达目的地的概率分别为0.9,0.8.则甲正点到达目的地的概率为( )
A.0.72 B.0.96 C.0.86 D.0.84
C [设事件A表示甲正点到达目的地,事件B表示甲乘火车到达目的地,事件C表示甲乘汽车到达目的地,由题意知P(B)=0.4,P(C)=0.6,P(A|B)=0.8,P(A|C)=0.9.
由全概率公式得
P(A)=P(B)P(A|B)+P(C)P(A|C)=0.4×0.8+0.6×0.9=0.32+0.54=0.86.故选C.]
2.播种用的一等小麦种子中混有2%的二等种子,1.5%的三等种子,1%的四等种子.用一、二、三、四等种子长出的穗含50颗以上麦粒的概率分别为0.5,0.15,0.1,0.05,则这批种子所结的穗含50颗以上麦粒的概率为( )
A.0.8 B.0.832 5 C.0.532 5 D.0.482 5
D [设从这批种子中任选一颗是一、二、三、四等种子的事件分别是A1,A2,A3,A4,则它们构成样本空间的一个划分.设B=“从这批种子中任选一颗,所结的穗含50颗以上麦粒”,则:
P(B)=P(Ai)P(B|Ai)
=95.5%×0.5+2%×0.15+1.5%×0.1+1%×0.05
=0.482 5.故选D.]
3.设某医院仓库中有10盒同样规格的X光片,已知其中有5盒、3盒、2盒依次是甲厂、乙厂、丙厂生产的.且甲、乙、丙三厂生产该种X光片的次品率依次为,,,现从这10盒中任取一盒,再从这盒中任取一张X光片,则取得的X光片是次品的概率为( )
A.0.08 B.0.1 C.0.15 D.0.2
A [以A1,A2,A3分别表示取得的这盒X光片是由甲厂、乙厂、丙厂生产的,B表示取得的X光片为次品,
P(A1)=,P(A2)=,
P(A3)=,
P(B|A1)=,P(B|A2)=,
P(B|A3)=;
则由全概率公式,所求概率为
P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=×+×+×=0.08.]
4.一道考题有4个答案,要求学生将其中的一个正确答案选择出来.某考生知道正确答案的概率为,而乱猜正确的概率为.在乱猜时,4个答案都有机会被他选择,如果他答对了,则他确实知道正确答案的概率是( )
A. B. C. D.
B [设A=“考生答对”,B=“考生知道正确答案”,
由全概率公式:
P(A)=P(B)P(A|B)+P()P(A|)=×1+×=.
又由贝叶斯公式:
P(B|A)===.故选B.]
5.某卡车为乡村小学运送书籍,共装有10个纸箱,其中5箱英语书、2箱数学书、3箱语文书. 到目的地时发现丢失一箱,但不知丢失哪一箱. 现从剩下9箱中任意打开两箱,结果都是英语书,则丢失的一箱也是英语书的概率为( )
A. B. C. D.
B [用A表示丢失一箱后任取两箱是英语书,用Bk表示丢失的一箱为k,k=1,2,3分别表示英语书、数学书、语文书.
由全概率公式得P(A)=P(Bk)P(A|Bk)=·+·+·=.
P(B1|A)===÷=.故选B.]
二、填空题
6.根据以往的临床记录,某种诊断癌症的试验有如下的效果:若以A表示事件“试验反应为阳性”,以C表示事件“被诊断者患有癌症”,则有P(A|C)=0.95,P(|)=0.95,现在对自然人群进行普查, 设被试验的人患有癌症的概率为0.005, 即P(C)=0.005, 则P(C|A)=______.(精确到0.001)
0.087 [由题设,有
P()=1-P(C)=0.995,P(A|)=1-P(|)=0.05,
由贝叶斯公式,
得P(C|A)=≈0.087.]
7.一个盒子中装有15个乒乓球,其中9个新球,在第一次比赛时任意抽取3只,比赛后仍放回原盒中;在第二次比赛时同样地任取3只球,则第二次取出的3个球均为新球的概率为________.
[设A=“第二次取出的均为新球”,
Bi=“第一次取出的3个球恰有i个新球”(i=0,1,2,3).
由全概率公式
P(A)=P(B0)P(A|B0)+P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)
=·+·+·+·
=.]
8.电报发射台发出“·”和“–”的比例为5∶3,由于干扰,传送“·”时失真的概率为,传送“–”时失真的概率为,则接受台收到“·”时发出信号恰是“·”的概率为________.
[答案]
三、解答题
9.设甲盒有3个白球,2个红球,乙盒有4个白球,1个红球,现从甲盒任取2球放入乙盒,再从乙盒任取两球,求:
(1)从乙盒取出2个红球的概率;
(2)已知从乙盒取出2个红球,求从甲盒取出两个红球的概率.
[解] (1)设A1=从甲盒取出2个红球;A2=从甲盒取出2个白球;A3=从甲盒取出1个白球和1个红球;B=从乙盒取出2个红球.则A1,A2,A3两两互斥,且A1+A2+A3=Ω,
所以P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)
=×+×+×=.
(2)P(A1|B)====.
10.设5支枪中有2支未经试射校正,3支已校正.一射手用校正过的枪射击,中靶率为0.9,用未校正过的枪射击,中靶率为0.4.
(1)该射手任取一支枪射击,中靶的概率是多少?
(2)若任取一支枪射击,结果未中靶,求该枪未校正的概率.
[解] 设A表示枪已校正,B表示射击中靶.
则P(A)=,P()=,P(B|A)=0.9,
P(|A)=0.1,P(B|)=0.4,P(|)=0.6.
(1)由全概率公式可得P(B)=P(A)P(B|A)+P()·P(B|)
=×0.9+×0.4=0.7.
(2)由贝叶斯公式可得P(|)===0.8.
素养达标
1.(多选题)在某一季节,疾病D1的发病率为2%,病人中40%表现出症状S,疾病D2的发病率为5%,其中18%表现出症状S,疾病D3的发病率为0.5%,症状S在病人中占60%.则( )
A.任意一位病人有症状S的概率为0.02
B.病人有症状S时患疾病D1的概率为0.4
C.病人有症状S时患疾病D2的概率为0.45
D.病人有症状S时患疾病D3的概率为0.25
ABC [P(D1)=0.02,P(D2)=0.05,
P(D3)=0.005,P(S|D1)=0.4,
P(S|D2)=0.18,P(S|D3)=0.6,
由全概率公式得P(S)
=(Di)P(S|Di)
=0.02×0.4+0.05×0.18+0.005×0.6=0.02.
由贝叶斯公式得:
P(D1|S)==
=0.4,
P(D2|S)==
=0.45,
P(D3|S)===0.15.]
2.从数字1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个整数,记为Y,则P(Y=2)=( )
A. B. C. D.
C [由题意,知P(X=1)=P(X=2)=P(X=3)=P(X=4)=.易得P(Y=2|X=1)=0,P(Y=2|X=2)=,P(Y=2|X=3)=,P(Y=2|X=4)=,由全概率公式,可得P(Y=2)=P(X=1)P(Y=2|X=1)+P(X=2)P(Y=2|X=2)+P(X=3)P(Y=2|X=3)+P(X=4)P(Y=2|X=4)=×=.]
3.人们为了解一支股票未来一定时期内价格的变化, 往往会去分析影响股票价格的基本因素, 比如利率的变化. 现假设人们经分析估计利率下调的概率为60%, 利率不变的概率为40%. 根据经验, 人们估计, 在利率下调的情况下, 该支股票价格上涨的概率为80%,而在利率不变的情况下, 其价格上涨的概率为40%, 则该支股票将上涨的概率为________.
64% [记A为事件“利率下调”, 那么即为 “利率不变”, 记B为事件“股票价格上涨”. 依题设知P(A)=60%,P()=40%,P(B|A)=80%,P(B|)=40%,
于是P(B)=P(AB)+P(B)=P(A)P(B|A)+P()P(B|)=60%×80%+40%×40%=64%.]
4.某仓库有同样规格的产品12箱,其中6箱、4箱、2箱依次是由甲、乙、丙三个厂生产的,且三个厂的次品率分别为,,.现从这12箱中任取一箱,再从取得的一箱中任意取出一个产品.
(1)则取得的一个产品是次品的概率为________.
(2)若已知取得一个产品是次品,则这个次品是乙厂生产的概率是________.(精确到0.001)
(1)0.083 (2)0.287 [(1)设A={取得一个产品是次品},B1={取得一箱是甲厂的},B2={取得一箱是乙厂的},B3={取得一箱是丙厂的}.
三个厂的次品率分别为,,,
∴P(A|B1)=,P(A|B2)=,P(A|B3)=.
12箱产品中,甲占,乙占,丙占,
由全概率公式得P(A)=P(A|Bk)P(Bk)=×+×+×≈0.083.
(2)依题意,已知A发生,要求P(B2|A),此时用贝叶斯公式:
P(B2|A)=≈≈0.287.]
5.某人忘记了电话号码的最后一位数字,因而他随意地拨号.求他拨号不超过三次而接通电话的概率.若已知最后一位数字是奇数,那么此概率又是多少?
[解] 设Ai =“第i次接通电话”,
i = 1,2,3,
B=“拨号不超过3次接通电话”,
则事件B的表达式为B=A1∪(1A2)∪(12A3).
利用概率的加法公式和乘法公式
P(B)=P(A1)+P(1A2)+P(12A3)
=P(A1)+P(1)P(A2|1)+P(1)P(2|1)P(A3|12)=+×+××=.
若已知最后一位数字是奇数,则
P(B)=P(A1)+P(1A2)+P(12A3)
=P(A1)+P(1)P(A2|1)+P(1)P(2|1)P(A3|12)=+×+××=.