必修3·第1章第1节 细胞生活的环境
一、内环境
(1)血液的组成:血浆+血细胞
①血浆:血清+纤维蛋白原
②血细胞:红细胞、白细胞、血小板
(2)组织液:细胞间隙液(分布于组织细胞之间)
(3)淋巴:淋巴液(分布于淋巴管中,里面有淋巴细胞)
(4)人体内的血浆、组织液和淋巴三者间的物质联系图:
2、各种细胞的内环境
①血细胞直接生活的环境:血浆
②毛细血管壁细胞直接生活的环境:血浆和组织液
③毛细淋巴壁细胞直接生活的环境:淋巴和组织液
④体内绝大多数组织细胞直接生活的环境:组织液
3、内环境和外环境
(1)对于细胞来说
①内环境:细胞外液
②外环境:呼吸道、消化道、肺泡腔、输卵管、子宫等
(2)对于人体来说
①内环境:人体内部的环境
②外环境:人们生活的外界环境
二、人体内有关的液体
1、体液:包括细胞内液和细胞外液。细胞外液主要包括组织液、血浆、淋巴,也叫人体的内环境。此外,脑脊液也属于细胞外液。
(1)细胞内液:细胞内的液体,占体液的大部分。
(2)细胞外液:细胞外的液体,是细胞生活的液体环境,也称内环境。
①血浆:血细胞生活的外界环境。主要包括90%的水分、无机盐、糖类、蛋白质、脂质、激素、抗体、维生素及代谢产物。
②组织液:组织间隙的液体,是人体组织细胞生活的液体环境。主要包括水分、无机盐、糖类、脂质、氨基酸及代谢产物。
③淋巴:淋巴管内的液体,是淋巴细胞生活的液体环境,与组织液的成分相似。
④脑脊液:无色透明,相当于淋巴,充满蛛网膜下隙,对中枢神经系统起缓冲、保护、营养、运输代谢产物及维持颅内压的作用。
2、外分泌液:主要指外分泌腺(如唾液腺、胃腺、肠腺、胰腺、泪腺、汗腺、皮脂腺等)分泌的,运输到体外和消化腔的液体。包括各种消化液、泪液、汗液等。
(1)消化液:由各种消化腺分泌,在消化腔中发挥作用,含有各种消化酶。
(2)泪液:由泪腺分泌,主要包括水分、无机盐、溶菌酶。
(3)汗液:由汗腺分泌,主要包括水分、无机盐、尿素等各种代谢废物。
3、原尿:血浆通过肾小球时经滤过作用形成,与血浆成分相比主要是不含大分子蛋白质。
4、尿液:原尿再经肾小管和集合管的重吸收后形成,主要包括水分、无机盐及代谢废物,是人体的重要排泄物。尿液是一种排泄物,既不是体液,也不是外分泌液。
三、细胞外液的成分
1、血浆成分:水、无机盐、糖类、蛋白质、脂质、氨基酸、激素、维生素、抗体、各种细胞代谢产物等。
2、组织液、淋巴的成分和含量与血浆相近,但又不完全相同,“最主要”的差别是血浆中含有较多的蛋白质,而组织液和淋巴中的蛋白质含量很少。
四、细胞外液的理化特性
1、溶液的渗透压:是指溶液中溶质微粒对水的吸引力。
溶液渗透压的大小取决于单位体积溶液中溶质的微粒的数目,溶质微粒越多,溶液浓度越高,对水的吸引力越大,溶液渗透压越高。由于血浆中含有无机盐和蛋白质,故血浆渗透压与其有关。
(1)水在细胞内外的转移取决于细胞内外渗透压的大小
(2)内钾外钠:决定细胞内液渗透压的主要是钾盐(因为钾盐主要存在于细胞内液);
决定细胞外液渗透压的主要是钠盐(因为钠盐主要存在于细胞外液)。
(3)细胞外液渗透压>细胞内液渗透压—→水外流→细胞皱缩
细胞外液渗透压<细胞内液渗透压—→水内流→细胞肿胀
2、正常人的血液pH范围是7.35~7.45,缓冲物质是H2CO3/NaHCO3、NaH2PO4/Na2HPO4
3、温度:37℃左右
五、内环境的功能:内环境是细胞与外界环境进行物质交换的媒介。高等的多细胞动物,它们的体细胞只有通过内环境,才能与外界环境进行物质交换。
必修3·第1章第2节 内环境稳态的重要性
一、内环境稳态
内环境的化学成分(水分、无机盐、有机物)和理化特性(渗透压、pH、温度)保持相对稳定的状态。
稳态是指正常机体在神经系统、体液和免疫系统的调节下,通过各个器官、系统的协调活动,共同维持内环境的相对稳定的状态。
二、参与内环境稳态的系统
直接参与物质交换的系统:呼吸系统、消化系统、循环系统和泌尿系统
起调节作用的系统:神经系统(神经调节)、内分泌系统(体液调节)、免疫系统(免疫调节)
三、稳态调节机制的认识
1、法国生理学家“贝尔纳”:神经调节
2、美国生理学家“坎农”:神经—体液调节
3、现代观点:神经—体液—免疫调节(作为内环境稳态的主要调节机制)
四、稳态调节原理
1、渗透压调节
2、血浆pH稳态
人体在新陈代谢过程中,会产生许多酸性物质,如乳酸、碳酸;人的食物(如蔬菜、水果)中往往含有一些碱性物质(如碳酸钠)。这些酸性和碱性的物质进入血液,就会使血液的pH发生变化。
血液中含有许多对酸碱度起缓冲作用的物质——缓冲物质,每一对缓冲物质都是由一种弱酸和相应的一种强碱盐组成的,如H2CO3/NaHCO3,NaH2PO4/Na2HPO4等,当机体剧烈运动时,肌肉中产生大量的乳酸,碳酸等物质,并且进入血液。乳酸进入血液后,就与血液中的碳酸氢钠发生作用,生成乳酸钠和碳酸。碳酸是一种弱酸,而且又可以分解成二氧化碳和水,所以对血液的pH影响不大。血液中增多的二氧化碳会刺激控制呼吸活动的神经中枢,促使呼吸运动增强,增加通气量,从而将二氧化碳排出体外。当碳酸钠进入血液后,就与血液中的碳酸发生作用,形成碳酸氢盐,而过多的碳酸氢盐可以由肾脏排出。这样,由于血液中缓冲物质的调节作用,可以使血液的酸碱度不会发生很大的变化,从而维持在相对稳定的状态。
原理:当酸性物质进入血液时,H++HCO3- ==== H2CO3
H2CO3 ==== H2O+CO2 ↑(从肺部排出)
例如:乳酸进入血液后,就与血液中的NaHCO3发生作用,生成乳酸钠和H2CO3。
当碱性物质进入血液时 OH-+H2CO3 ==== HCO3-+H2O
例如:当Na2CO3进入血液后。就与血液中的H2CO3发生作用,生成碳酸氢盐,而过多的碳酸氢盐可以由肾脏排出。
3、体温恒定
人和高等动物具有一定的体温,且相对恒定是进行新陈代谢(生化反应)和正常生命活动的重要条件。人体产热是能量代谢的结果,安静时人体产热主要来自内脏(肝脏、肾等),运动时主要来自骨骼肌,可比安静时高出10余倍。人在寒冷的环境中,常打“寒战”,产热量明显增加。人体的散热主要通过皮肤。当气温达到35℃以上时,人体散热主要通过汗液蒸发这一条途径。人体体温的相对恒定是因为产热过程和散热过程能够维持动态平衡,主要调节中枢在下丘脑。
4、水平衡、盐平衡、血糖平衡、体温平衡
5、反馈调节:正反馈和负反馈
反馈是一个过程的结果返回影响过程的现象。
正反馈:正反馈是结果对过程产生促进作用,即反应的产物反过来促进反应的进行。反馈信息不是制约控制部分的活动,而是促进与加强控制部分的活动。 类似于血糖浓度升高,胰岛素浓度也升高的关系。正反馈的意义在于使生理过程不断加强,直至最终完成生理功能,在正反馈情况时,反馈控制系统处于再生状态。 生命活动中常见的正反馈有:排便、排尿、射精、分娩、血液凝固等。
负反馈:负反馈是结果对过程起抑制作用,即反应的产物反过来抑制反应的进行。反馈信息与控制信息的作用方向相反,因而可以纠正控制信息的效应。类似于血糖浓度升高,胰高血糖素浓度反而降低的关系。 负反馈调节的主要意义在于维持机体内环境的稳态,在负反馈情况时,反馈控制系统平时处于稳定状态。水平衡、盐平衡、血糖平衡、体温平衡等的调节就属于负反馈调节。
五、内环境稳态的重要意义
稳态是内环境处于相对稳定(动态平衡)的一种状态,是指各种物质浓度、内环境理化因素的相对恒定,这种恒定是在神经、体液、免疫等因素的调节下实现。稳态是内环境的相对稳定状态,而不是绝对稳定。
机体的新陈代谢是由细胞内很多复杂的酶促反应组成的,而酶促反应的进行需要温和的外界条件,例如温度、pH等都必须保持在适宜的范围内,酶促反应才能正常进行。可见,内环境的稳态是机体进行正常生命活动的必要条件。
当内环境的稳态遭到破坏时,就会引起细胞新陈代谢紊乱,并导致疾病。例如,当血液中钙、磷的含量降低时,会影响骨组织的钙化,这在成年人表现为骨软化病,在儿童则表现为骨质生长障碍、骨化不全的佝偻病。血钙过高会引起肌无力,血钙过低则会引起肌肉抽搐等疾病。
必修3·第2章第1节 通过神经系统的调节
一、反射与反射弧
1、神经调节:指通过神经系统对生命活动进行的调节。是指在中枢神经系统的参与下,人和动物体对体内和外界环境的各种刺激所发生的规律性的反应,是长期自然选择的结果。
2、反射:神经调节的基本形式
①是指在中枢神经系统参与下,动物体或人体对内外环境的变化所做出的规律性应答。
②非条件反射:通过遗传获得的先天性反射,由具体刺激直接引起的反应。如膝跳反射
③条件反射:建立在非条件反射的基础上,是在生活过程中逐渐形成的后天性反射,由各种信号刺激引起的反应。
3、反射弧:神经调节的结构基础
①组成:由感受器、传入神经、神经中枢、传出神经、效应器五个部分组成。反射过程一般是如下进行的:一定的刺激按一定的感受器所感受,感受器发生了兴奋;兴奋以神经冲动的方式经过传入神经传向神经中枢;通过神经中枢的分析与综合活动,神经中枢产生兴奋或抑制信号;又经一定的传出神经到达效应器,使效应器发生相应的活动。如果神经中枢发生抑制,则神经中枢原有的传出冲动减弱或停止。
②感受器:能将特定的刺激转变成神经冲动。
③传入神经与传出神经
④应激性、反射、适应性和遗传性的区别
应激性是指一切生物对外界各种刺激(如光、温度、声音、食物、化学物质、机械运动、地心引力等)所发生的反应。
反射是指多细胞高等动物通过神经系统对各种刺激发生的反应。由此可以说明,反射是应激性的一种表现形式,隶属于应激性的范畴。适应性是指生物体与环境表现相适合的现象。
应激性是一种动态反应,在比较短的时间内完成;适应性是通过长期的自然选择,需要很长时间形成的。应激性的结果是使生物适应环境,可见它是生物适应性的一种表现形式。但生物体的有些适应特征(如北极熊的白色、绿草地中蚱蜢呈绿色等)是通过遗传传给子代的。并非生物体接受某种刺激后才能产生,这与应激性是不同的。
遗传性是指亲代性状通过遗传物质传给后代的能力,也是生物体要求一定的生长、发育条件,并对生活条件做出一定反应的特性。因此,生物体表现出来的应激性、反射和适应性最终是由遗传性决定的。
二、兴奋的传导
1、在神经纤维上的传导:兴奋是以电信号(局部电流、神经冲动)的形式沿着神经纤维传导的。
(3)传导特征
①完整性:神经纤维要实现其兴奋传导的功能,就要求其在结构上和生理功能上都是完整的。如果神经纤维被切断,兴奋即不可能通过断口;如果神经纤维在麻醉剂或低温作用下发生功能的改变,破坏了生理功能的完整性,则兴奋的传导也会发生阻滞。
②双向性:根据兴奋传导的机制,神经纤维受刺激产生兴奋时,兴奋能由受刺激的部位同时向相反的两个方向传导,因为局部电流能够向相反的两个方向流动。(双向传导)
③绝缘性:一条神经干包含着许多条神经纤维,各条神经纤维各自传导自己的兴奋而基本上互不干扰,这称为绝缘性。传导的绝缘性能使神经调节更为专一而精确。
④相对不疲劳性:有人曾在实验条件下,用每秒50~100次的电刺激连续刺激神经9~12小时,观察到神经纤维始终保持着传导兴奋的能力。因此与突触的兴奋传递相比,神经纤维是不容易疲劳的。
(4)兴奋在神经纤维上传导的实质:膜电位变化→局部电流(生物电的传导)
①静息电位:神经纤维未受到刺激时,细胞膜使大量的钠离子留在膜外的组织液中,钾离于留在细胞膜内,由于钾离子透过细胞膜向外扩散比钠离子向内扩散更容易,因此,细胞膜外的阳离子比细胞膜内的阳离子多,造成离子外正内负。膜外呈正电位,膜内呈负电位。此时,膜内外存在的电位差叫做静息电位。(外正内负)
②动作电位:当神经纤维的某一部位受到刺激产生兴奋时兴奋部位的细胞膜通透性改变,大量钠离子内流,使膜内外离子的分布迅速由外正内负变为外负内正,发生了一次很快的电位变化,这种电位波动叫做动作电位。(外负内正)
在动作电位产生的过程中,钾离子和钠离子的跨膜运输方式是协助扩散。协助扩散是在质膜上载体蛋白的协助下进行的,钾离子和钠离子的跨膜运输的蛋白载体就是离子通道蛋白。另外,恢复为静息电位时,是主动运输方式泵出膜的。
要测量神经纤维的静息电位,电流表的两个电极就要分别接在神经纤维的外膜和内膜上,且电流(正电荷移动方向)必定是从外膜流向内膜。
2、在神经元之间的传递
(1)突触:神经元之间接触的部位,由一个神经元的轴突末端膨大部位——突触小体与另一个神经元的细胞体或树突相接触而形成。
①突触小体:轴突末端膨大的部位
②突触前膜:轴突末端突触小体膜
③突触间隙:突触前、后膜之间的空隙(组织液)
④突触后膜:另一个神经元的细胞体膜或树突膜
(2)过程
轴突→突触小体→突触小泡→神经递质→突触前膜——→突触间隙——→突触后膜(与突触后膜受体结合)——→另一个神经元产生兴奋或抑制
(3)神经递质:是指神经末梢释放的特殊化学物质,它能作用于支配的神经元或效应器细胞膜上的受体,从而完成信息传递功能。
①合成:在细胞质通过一系列酶的催化作用中逐步合成,合成后由小泡摄取并贮存起来。
②释放:通过胞吐的方式释放在突触间隙。.
③结合:神经递质通过与突触后膜或效应器细胞膜上的特异性受体相结合而发挥作用。递质与受体结合后对突触后膜的离子通透性发生影响,引起突触后膜电位的变化,从而完成信息的跨突触传递。
④失活:神经递质发生效应后,很快就被相应的酶分解而失活或被移走而迅速停止作用。递质被分解后的产物可被重新利用合成新的递质。因此,一个神经冲动只能引起一次递质释放,产生一次突触后膜的电位变化。
⑤类型
兴奋性递质:乙酰胆碱、多巴胺、去甲肾上腺素、肾上腺素、5-羟色胺、谷氨酸、天冬氨酸等。
抑制性递质:γ-氨基丁酸、甘氨酸、一氧化氮等。
(4)信号变化
①突触间:电信号→化学信号→电信号
②突触前膜:电信号→化学信号
③突触后膜:化学信号→电信号
(5)传递特征:
单向传导。即只能由一个神经元的轴突传导给另一个神经元的细胞体或树突,而不能向相反的方向传导,这是因为神经递质只存在于突触小体中,只能由突触前膜释放,通过突触间隙,作用于突触后膜,引起突触后膜发生兴奋性或抑制性的变化,从而引起下一个神经元的兴奋或抑制。
★兴奋在反射弧中的传导方式实质上是感受器把接受的刺激转变成电信号(局部电流)在传入神经纤维上双向传导,在通过神经元之间的突触时电信号又转变为化学信号(化学递质)在突触中单向传递。化学信号通过突触传递到另一神经元的细胞体或树突又转变为电信号在传出神经纤维上传导,所以效应器接受的神经冲动是电信号。
三、神经系统的分级调节
1、人的中枢神经系统包括脑和脊髓。脑包括大脑、小脑、间脑(主要由丘脑和下丘脑构成)、中脑、脑桥、延髓。
2、神经中枢:中枢神经系统内调节某一特定生理功能的神经元群。包括:大脑皮层、躯体运动中枢、躯体感觉中枢、语言中枢、视觉中枢、听觉中枢等。
3、分级调节
(1)大脑皮层:最高级的调节中枢
(2)小脑:维持身体平衡中枢
(3)下丘脑在机体稳态调节中的主要作用:
①感受:渗透压感受器,感受渗透压升高。
②分泌:分泌抗利尿激素、促甲状腺激素释放激素、促性腺激素释放激素、促肾上腺素释放激素等
③调节:水平衡中枢、体温调节中枢、血糖调节中枢、渗透压调节中枢。
④传导:可传导渗透压感受器产生的兴奋至大脑皮层,使大脑皮层产生渴觉。
(4)脑干:呼吸中枢
四、人脑的高级功能
1、大脑皮层中央前回(第一运动区)控制躯体的运动
①倒置关系:皮层代表区的位置与躯体各部分的关系呈是倒置的;
②交叉控制:中央前回左边控制右侧躯体运动,中央前回右边控制左侧躯体运动;
③皮层代表区范围的大小与躯体的大小无关,而与躯体运动的精细复杂程度有关。
2、人的语言功能与大脑皮层的言语区有关
①运动性语言中枢:S区。受损伤,患运动性失语症
②听觉性语言中枢:H区。受损伤,患听觉性失语症
③视觉性语言中枢:V区。阅读文字
④书写性语言中枢:W区。书写文字
必修3·第2章第2节 通过激素的调节
一、激素调节的发现——促胰液素
1、发现历程
①沃泰默:胰液的分泌是神经反射
②贝利斯和斯他林:胰液的分泌是受某种化学物质——促胰液素调节。(他们采纳了同事哈代(W.B.Hardy)的建议,创用了源于希腊文的一个字“激素”(hormone,“刺激”的意思)这个名称(1905)。促胰液素便是历史上第一个被发现的激素。这样,产生了“激素调节”这个新概念,以及通过血液循环传递激素的“内分泌”方式,从而建立了“内分泌学”这个新领域。)
③巴甫洛夫:胰液的分泌属于神经反射→促胰液素
2、促胰液素的化学本质:第一种被发现的激素,由下丘脑神经细胞分泌的一种碱性多肽。由27个氨基酸残基组成,含11种不同氨基酸。
二、激素调节
由内分泌器官(或细胞)分泌的化学物质(激素)对动物体的生命活动进行的调节。
1、腺体:由具有分泌功能的细胞构成,存在于器官内或独立存在的器官。
(1)外分泌腺:又称“有管腺”,其分泌物通过腺导管输送到相应的组织或器官发挥其调节作用。如唾液腺、胃腺、肠腺、汗腺、皮脂腺、乳腺、泪腺、肝脏、胰腺等(胰腺分为内分泌部和外分泌部,胰的大部分属于外分泌部,但是胰岛属于内分泌部)。
(2)内分泌腺;又称“无管腺”,没有导管,其分泌物——激素直接进入细胞周围的血管和淋巴,通过血液循环和淋巴循环输送到各细胞、组织或器官中,调节身体的生长、发育、物质代谢和组织器官的活动。如垂体、甲状腺、肾上腺、性腺、胸腺、胰岛等。
2、动物激素的种类
化学本质 激素名称 产生部位 生理功能
氨基酸衍生物 甲状腺激素(含碘) 甲状腺 促进新陈代谢和生长发育,尤其对中枢神经系统的发育和功能具有重要影响,提高神经系统的兴奋性。
肾上腺素 肾上腺髓质 增强心脏活动,使动脉收缩、血压升高。对物质代谢的作用在 于能促进肝糖原分解,使血糖升高。
多肽类 促甲状腺激素释放激素 下丘脑 促进垂体合成和分泌促甲状腺激素
促性腺激素释放激素 促进垂体合成和分泌促性腺激素
促肾上腺素释放激素 促进垂体合成和分泌促肾上腺素
抗利尿激素 下丘脑由下丘脑神经细胞分泌、垂体后叶释放 促进肾小管和集合管对水分的重吸收,减少尿的排出。
催产素 促进妊娠末期子宫收缩。
胸腺素 胸腺 促进T淋巴细胞的分化、成熟,增强淋巴细胞的功能,临床上常用于治疗免疫功能缺陷或低下(如艾滋病、系统性红斑狼疮等)
蛋白质类 生长激素 垂体 促进生长,主要促进蛋白质的合成和骨的生长。
促甲状腺激素 促进甲状腺的生长发育,调节甲状腺激素的合成和分泌。
促性腺激素 促进性腺的生长发育,调节性激素的合成和分泌。
促肾上腺素 促进肾上腺皮质的合成和分泌肾上腺素
催乳素 促进乳腺的发育和泌乳。
胰岛素 卵巢胰岛B细胞 促进血糖合成糖原,抑制非糖物质转化为葡萄糖,从而降低血糖浓度。
胰高血糖素 胰岛A细胞 促进糖原分解和非糖物质转化为葡萄糖,从而升高血糖浓度。
固醇类 雄性激素 肾上腺皮质分泌少量,主要由睾丸分泌。 促进雄性生殖器官的发育和生殖细胞的形成,激发并维持雄性第二性征。
雌性激素 肾上腺皮质分泌少量,主要由卵巢分泌。 促进雌性生殖器官的发育和生殖细胞的形成,激发并维持雌性第二性征。
孕激素 卵巢 促进子宫内膜和乳腺等的生长发育,为受精卵和泌乳准备条件。
醛固酮(肾上腺盐皮质激素) 肾上腺皮质 促进肾小管和集合管对钠离子(Na+ )的重吸收和钾离子(K+ )的分泌。 (保钠排钾)
糖皮质激素 调节糖类、蛋白质、脂肪的代谢,促进蛋白质分解,加强糖异生;使外周组织对葡萄 糖的摄取、利用减少,故可使血糖升高。
三、激素调节的实例
1、血糖平衡的调节
(1)血糖的来路和去路
途径 过程 作用
食物糖类消化吸收
吸收方式:红细胞是协助扩散,
其他组织细胞是主动运输
肝糖原分解 主要调节形式,灵活调节
非糖物质(脂肪、氨基酸等)转变成葡萄糖 重要调剂(糖异生过程)
去路 氧化分解 主要、最终利用形式
合成肝糖原、肌糖原 重要调节,动态调节
转变成脂肪、氨基酸等非糖物质 重要储存形式
(2)血糖浓度
①正常值:80—120mg/dL(0.8—1.2g/L)
②低血糖:<60mg/dL
③高血糖:>130mg/dL
④尿糖:>160mg/dL
(3)糖尿病
①病因:胰岛B细胞受损,胰岛素分泌不足。
②诊断:持续高血糖且有糖尿
③防治:基因治疗、药物治疗、饮食习惯、加强锻炼
④糖尿病患者的典型症状是:多尿、多饮、多食、体重减少(“三多一少”现象)
尿糖是指尿液中含有葡萄糖,这是从成分上进行考虑的;糖尿是指具有糖尿病症状的人,这是从症状上进行考虑的。
(4)激素调节的相关激素
(5)血糖平衡中的激素调节(体液调节)
2、甲状腺激素、性激素、肾上腺素分泌的分级调节
四、常见激素间的关系
1、生理效应的相互关系:
①协同作用:是指不同激素对同一生理效应都发挥作用,从而达到增强效应的结果。如:肾上腺素和胰高血糖素都有升高血糖的作用;生长激素和甲状腺激素对生长发育的作用。
②拮抗作用:是指不同激素对某一生理效应发挥相反的作用。如肾上腺素和胰高血糖素与胰岛素之间对血糖浓度的调节作用则表现出拮抗作用。
2、分泌调节的相互关系:
在血糖平衡调节中,胰岛素的分泌量增加会抑制胰高血糖素的分泌,而胰高血糖素的分泌会促进胰岛素的分泌。
【分析】这要从胰岛素和胰高血糖素的作用和调节来综合考虑。
①胰岛素的作用是当血糖浓度升高时,起降低血糖浓度的目的。而胰高血糖素的作用是当血糖浓度降低时,起升高血糖浓度的目的。二者互为拮抗。
②“胰岛素的分泌量增加会抑制胰高血糖素的分泌”,这是在血糖浓度本身就高的情况下(摄食后)发生的,此时胰岛素分泌增加抑制胰高血糖素的分泌,胰高血糖素分泌的减少,导致肝糖原的分解减少,缓解降血糖的压力。这样,胰岛素分泌一方面直接降低血糖,一方面通过抑制胰高血糖素的分泌间接降低血糖,双管齐下从而达到迅速降血糖的效果。
③“胰高血糖素的分泌会促进胰岛素的分泌”,这是在血糖浓度本身就低的情况下发生的,但升血糖,在于用血糖。而血糖的利用必须进入细胞内,血糖能否进入细胞内,就取决于胰岛素了。胰岛素之所以起降低血糖浓度的作用,是因为其能够促进葡萄糖进入细胞中,进一步实现葡萄糖的氧化分解或合成糖原或转变成脂肪、氨基酸等。因此,胰高血糖素的分泌势必会促进胰岛素的分泌。
五、激素的作用
1、从整个机体来说,激素的作用可归纳为
①通过调节三大营养物质及水盐代谢的作用,维持代谢的平衡。
②促进形态发生和形成,确保机体器官与组织的正常发育、成熟及生长,并影响衰老。
③调节中枢神经系统及植物性神经的活动,从而影响学习、记忆与行为。
④促进生殖器官与生殖细胞的发育、成熟,调节包括受精、受精卵的运行、着床、怀孕以及泌乳的生殖过程,使整个生殖环节的生理功能正常。
⑤在体内外环境发生剧烈变化时发挥重要的调节作用,使机体得以适应新的情况。
2、激素作用的一般特征
①激素作用的特异性:激素随血流分布到全身各处,与组织细胞广泛接触,但却是有选择性的作用于某些细胞、腺体、器官,能被激素作用的器官、腺体、细胞分别称为靶器官、靶腺、靶细胞。
各种激素所作用的靶细胞的数量和广泛性有很大差异。大多数激素均有其固定的靶细胞或靶器官。例如,垂体的三种促激素都是蛋白质激素,可是其中促甲状腺激素只作用于甲状腺,促肾上腺皮质激素只作用于肾上腺皮质,促性腺激素只作用于性腺。另外,有的激素却能广泛的影响细胞代谢,如生长激素、胰岛素等。
②激素具有高效能的作用:激素在血液中含量很少,但却能显著加强细胞内的生化反应,对机体的代谢、生长与生殖等重要生理过程有着巨大的影响。如每周注射几毫克的生长激素就可使侏儒症患者生长速度显著增快,追上正常人。
③激素是生理调节物质:各种激素只是使靶器官的功能加强(刺激)或减弱(抑制)。体内的激素只是“唤起”靶器官存在的潜势,不能产生新的过程。
④激素在体内不断的发生代谢性失活:激素在体内不断的失活,并不断地被排出体外。失活的地点主要有两个:一个是激素作用的靶细胞,即当激素发生作用时,激素本身被失活,如促甲状腺激素在甲状腺内失活等;另一个是肝脏,肝脏内有许多酶,可使各种激素转化为活性很低,甚至没有活性的物质,最后随尿液排出,这是激素失活的重要地点。
3、激素作用的机理
①含氮类激素作用机理:含氮激素是通过与细胞膜上的受体结合发挥其调节作用的。激素受体是细胞膜上的某种蛋白质结构成分。激素与受体的结合具有高度的特异性和高度的亲和力。激素作为第一信使与受体结合后,首先引起受体构型的变化,激活与受体相结合的效应器。一般认为受体和效应器都在细胞表面的质膜上。并通过第二信使(如环一磷酸腺苷cAMP)传递激素的信息而在细胞内激活一些酶类,从而促进中间代谢和膜的通透性或通过控制DNA转录、翻译而影响特异蛋白质的合成,最终表现出激素的特点生理反应。
②类固醇激素的作用机理:类固醇激素是一类分子较小、亲脂性的物质。易透过细胞膜进入细胞质并与细胞质中的受体结合,形成激素-受体复合物,发生构象变化,形成一个有利于穿过核孔和与染色质具有高度亲和力的结构。进入细胞核后,复合物与染色质上的非组蛋白质相互作用而与DNA结合,启动DNA的转录、翻译进程,产生诱导蛋白,从而导致生理效应的发生。
六、与激素有关的人体疾病
病症 病因 症状
呆小症 幼体甲状腺激素分泌不足 身体矮小、智力低下、生殖器官发育不全
甲亢 成体甲状腺激素分泌过多 精神亢奋、代谢旺盛、身体日渐消瘦
地方性甲状腺肿 因缺碘导致甲状腺激素合成不足 甲状腺代偿性增生(“大脖子病”)
侏儒症 幼体生长激素分泌过少 身体矮小、智力正常、生殖器官发育正常
巨人症 幼体生长激素分泌过多 身材异常高大
肢端肥大症 成体生长激素分泌过多 身体指、趾等端部增大
糖尿病 胰岛素分泌不足 出现尿糖等症状
必修3·第2章第3节 免疫调节
一、人体免疫系统的三大防线:
第一道:皮肤、粘膜的屏障作用及皮肤、黏膜以外的杀菌物质(如溶菌酶)的杀灭作用。
第二道:吞噬细胞的吞噬作用及体液中杀菌物质的杀灭作用。
第三道:免疫器官、免疫细胞、免疫物质共同组成人体的免疫系统,特异性免疫是保卫人体的第三道防线
而泪液、胃液、唾液属于第一道防线的分泌物,故也属第一道防线。
皮肤和黏膜屏障,是指机体体表的皮肤和所有与外界相通的腔道的黏膜,是机体与外界直接接触的结构,微生物只有通过皮肤和黏膜才能侵入体内,因此皮肤和黏膜构成了动物体防御外部入侵者的第一道防线。正常健康的皮肤黏膜,绝大多数病原微生物是不能通过的。皮肤和黏膜的机械阻挡和排除是主要作用,如呼吸道纤毛上皮的摆动,尿液、泪液、唾液的冲洗。
此外,皮下和黏膜下腺体的分泌液中含有多种抑菌和杀菌物质,如汗腺分泌的汗液中含有的乳酸、皮脂腺分泌的脂肪酸、泪液和唾液中的溶菌酶等,都具有抑制或杀灭局部病原菌的作用。再者,皮肤黏膜上存在着正常菌群,对病原微生物具有拮抗作用。
二、免疫系统的组成
1、免疫器官:骨髓、胸腺、脾、淋巴结等;免疫细胞:淋巴细胞、吞噬细胞等;免疫物质:各种抗体和淋巴因子等。
2、特异性免疫中发挥免疫作用的主要是淋巴细胞;由骨髓中造血干细胞分化、发育而来的。
3、与免疫有关的细胞总结
名 称 来 源 功 能 具有特异性识别功能
吞噬细胞 造血干细胞 处理、呈递抗原,吞噬抗原和抗体复合物
B细胞 造血干细胞(在骨髓中成熟) 识别抗原、分化成为效应细胞、记忆细胞 √
T细胞 造血干细胞(在胸腺中成熟) 识别、呈递抗原、分化成为效应细胞、记忆细胞 √
浆细胞 B细胞或记忆细胞 分泌抗体
效应T细胞 T细胞或记忆细胞 分泌淋巴因子,与靶细胞结合发挥免疫效应 √
记忆细胞 B细胞、T细胞、记忆细胞 识别抗原、分化成为相应的效应细胞 √
三、体液免疫(主要是B细胞起作用)
抗原进入机体后,大多数抗原经吞噬细胞的摄取和处理,将抗原决定簇暴露出来,然后将抗原呈递给T细胞,再由T细胞呈递给B细胞。有的抗原可以直接刺激B细胞。B细胞接受抗原刺激后,开始进行一系列的增殖、分化,形成浆细胞和记忆细胞。(记忆细胞保持对抗原的记忆,一段时间后,相同的抗原再次进入机体,记忆细胞就迅速增殖、分化,形成大量浆细胞)浆细胞产生的抗体与相应的抗原特异性结合,发挥免疫效应。抗体与抗原结合,抑制细菌的繁殖或对宿主细胞的黏附;抗体与病毒结合,可以使病毒失去侵染和破坏宿主细胞的能力。抗原抗体结合后,形成沉淀或细胞集团,最终被吞噬细胞消化。
四、细胞免疫(主要是T细胞起作用)
刚开始与体液免疫的开始基本相同。不同的是T细胞接受抗原刺激后,开始进行一系列的增殖、分化,形成效应T细胞和记忆细胞。当同一种抗原再次进入机体,记忆细胞就会迅速增殖、分化,形成大量效应T细胞。效应T细胞与被抗原入侵的宿主细胞密切接触,激活靶细胞内溶酶体酶,使靶细胞的通透性改变,渗透压发生变化,最终导致靶细胞裂解死亡。同时,效应T细胞还释放淋巴因子(白细胞介素、干扰素等)来加强免疫效应。
四、细胞免疫(主要是T细胞起作用)
刚开始与体液免疫的开始基本相同。不同的是T细胞接受抗原刺激后,开始进行一系列的增殖、分化,形成效应T细胞和记忆细胞。当同一种抗原再次进入机体,记忆细胞就会迅速增殖、分化,形成大量效应T细胞。效应T细胞与被抗原入侵的宿主细胞密切接触,激活靶细胞内溶酶体酶,使靶细胞的通透性改变,渗透压发生变化,最终导致靶细胞裂解死亡。同时,效应T细胞还释放淋巴因子(白细胞介素、干扰素等)来加强免疫效应。
五、体液免疫与细胞免疫的比较
体液免疫 细胞免疫
作用对象 没有进入细胞的抗原 被抗原侵入的宿主细胞(靶细胞)
①效应T细胞与靶细胞密切接触
②效应T细胞释放淋巴因子,促进细胞免疫的作用
对外毒素 细菌(产毒菌)在生长过程中由细胞内合成后分泌到细胞外的毒性物质(化学成分是蛋白质)称为外毒素。而脱去毒性的具有免疫原性的外毒素被称为类毒素,类毒素注入机体后,可刺激机体产生具有中和外毒素的抗毒素抗体。 体液免疫发挥作用
对细胞内寄生物 结核杆菌,麻风杆菌等胞内寄生菌、病毒 体液免疫先起作用,阻止寄生物的散播传染,当寄生物进入细胞后,细胞免疫将抗原从靶细胞释放出来,再由体液免疫发挥作用。
关 系 若细胞免疫不存在,体液免疫也将丧失。另外,对外来病原体进行免疫的时候并不是单一的起作用,而是两者结合起来起作用,只不过在起作用的时候分主次关系罢了。
六、免疫失调引起的疾病
当免疫功能失调时,可引起疾病,如免疫功能过强时,会引起过敏反应和自身免疫病。免疫功能过低时会引起免疫缺陷病。
1、过敏反应:已免疫的机体再次接受相同的物质的刺激时所发生的反应。
(1)特点:
①发作迅速,反应强烈,消退较快;
②一般不会破坏正常组织细胞,也不会引起组织损伤; ③有明显的遗传倾向和个体差异。
(2)过程:过敏反应发生于过敏原再次进入机体与吸附在细胞表面的相应抗体结合,使上述细胞释放组织胺,引起毛细血管扩张、血管壁细胞通透性增强、平滑肌收缩和腺体分泌增多。
(3)分布:过敏反应中的抗体分布于皮肤、呼吸道或消化道黏膜以及血液中某些细胞的表面。(体液免疫中的抗体主要分布在血清中,也分布在组织液及外分泌液中。)
(4)预防:预防过敏反应的主要措施是找出过敏原,尽量避免再次接触该过敏原。
(5)过敏原
诱发过敏反应的物质称为过敏原。引起过敏反应的物质有几百种,它们通过吸入、食入、注射或接触等方式使机体致敏。常见的过敏原有以下五大类:
①吸入式过敏原。如花粉、柳絮、粉尘、螨虫、动物皮屑、油烟、油漆、汽车尾气、煤气、香烟等。
②食入式过敏原。如牛奶、鸡蛋、鱼虾、牛羊肉、海鲜、动物脂肪、异体蛋白、酒精、毒品、抗菌素、消炎药、香油、香精、葱、姜、大蒜以及一些蔬菜、水果等。
③接触式过敏原。如冷空气、热空气、紫外线、辐射、化妆品、洗发水、洗洁精、染发剂、肥皂、化纤用品、塑料、金属饰品(手表、项链、戒指、耳环)、细菌、霉菌、病毒、寄生虫等。
④注射式过敏原。如青霉素、链霉素、异种血清等。
⑤精神紧张、工作压力、受微生物感染、电离辐射、烧伤等生物、理化因素影响而使结构或组成发生改变的自身组织抗原,以及由于外伤或感染而释放的自身隐蔽抗原,也可成为过敏原。
过敏原再次刺激机体时,分布着有抗体的细胞释放的物质除组织胺以外,还有:①激肽原酶,进一步缓激肽,作用于效应器官。②LTs(白三烯)。③PAF(血小板活化因子)及多种细胞因子。④PGD2(前列腺素D2)。
(6)为什么花粉会引起组织液的增多?
过敏反应时组织释放组织胺使毛细血管通透性加大,血浆中的蛋白质渗出毛细血管进入组织液,结果增加了组织液中蛋白质的浓度而降低了血浆中蛋白质的浓度,从而使组织液渗透压升高而吸水。
2、自身免疫病:自身免疫反应对自身的组织器官造成损伤并出现了症状。
病因:抗原的抗原决定簇与自身的组织和器官的表面结构十分相似,导致免疫系统产生的抗体不仅向抗原进攻的同时,也向自身的组织、器官发起进攻.如风湿性心脏病、类风湿性关节炎、系统性红斑狼疮、溃疡性结肠炎等。
3、免疫缺陷病:机体免疫功能缺乏或不足所引起的疾病。分为原发性免疫缺陷病、继发性免疫缺陷病,具体有先天性胸腺发育不全、获得性免疫缺陷综合症等。
艾滋病:AIDS是获得性免疫缺陷综合症的简称。HIV是艾滋病病毒(人类免疫缺陷病毒)简称。HIV侵入人体后与T淋巴细胞相结合,破坏T淋巴细胞,使免疫调节受到抑制,并逐渐使人体的免疫系统瘫痪,功能瓦解,最终使人无法抵抗其他病菌、病毒的入侵,或发生恶性肿瘤而死亡。
七、几组易混概念的辨析
抗原 抗体 淋巴因子 过敏原 过敏反应中的抗体
概 念 是指一类能诱导机体发生免疫应答并能与相应抗体或T淋巴细胞受体发生特异性免疫反应的大分子物质。 是高等动物体在抗原物质的刺激下,由浆细胞产生的一类能与相应抗原在体内外发生特异结合的免疫球蛋白。 机体受到抗原刺激后由免疫细胞(效应T细胞、巨噬细胞等)产生的可溶性免疫活性物质, 诱发过敏反应的物质称为过敏原。(指能够使人发生过敏的抗原。) 也是由浆细胞产生的。
化学本质 球蛋白(蛋白质) 蛋白质 球蛋白(蛋白质),主要是IgE
由浆细胞产生,
②能与抗原特异性结合 淋巴因子的作用一般无特异性,即不是直接针对抗原的。激活靶细胞中的溶酶体酶,使靶细胞裂解。 接触过敏原一定时间后,机体致敏。致敏期的时间可长可短,这段时间内没有临床症状,当再次接触过敏原后,方可发生过敏反应。 抗体的分布是在细胞表面,由于它和抗原结合会释放组织胺引起细胞发生一系列变化。
效 应 能刺激机体产生免疫应答能力的特性;与免疫应答的产物(抗体)发生特异反应的特性。 使抗原沉淀或形成细胞集团 干扰素可以激活人体细胞内破坏病毒的基因,从而抑制病毒在细胞内复制、繁殖,并且通过破坏含有病毒的细胞(靶细胞)来杀灭病毒。 使细胞释放组织胺、激肽、白三烯、血小板活化因子等,从而引起过敏反应
举 例 各种病菌、发生病变的自身细胞 IgA、IgD、IgE、IgG、IgM 如白细胞介素、干扰素、穿孔素等, 花粉、煤气、牛奶、酒精、病菌、电离辐射等。
区 别 抗原可以是过敏原,而过敏原(如青霉素、辐射等)不一定是抗原;抗原对所有人都是抗原,而过敏原则是对部分人起作用。
过敏反应中的抗体分布于皮肤、呼吸道或消化道黏膜以及血液中某些细胞的表面。(体液免疫中的抗体主要分布在血清中,也分布在组织液及外分泌液中。)
菌苗与疫苗
菌苗与疫苗都是用于预防接种的生物制品。
菌苗是用细菌菌体制造而成,分为死菌苗和活菌苗。死菌苗是细菌在适合的培养基上生长繁殖后将其杀死处理制成(如:百日咳、霍乱菌苗等)。这类菌苗接种于人体后不再生长繁殖,注射一次对身体刺激时间短,免疫效果差,需多次注射才能使人体获得较高而持久的免疫力。活菌苗是选用“无毒 ”或毒力很低的细菌,经培养繁殖后制成(如:卡介苗等)。这类菌苗进入人体后,能继续生长繁殖,对身体刺激时间长。和死菌苗相比,活菌苗的优点是接种量少,接种次数少,免疫效果好、免疫持久性长;其缺点是有效期短,液体活菌苗需冷藏,运输保存不方便。
疫苗是用病毒、立克次氏体、衣原体或螺旋体等接种于动物、鸡胚或组织培养并处理后制成。有灭活疫苗(如:狂犬病、斑诊伤寒疫苗等);减毒活疫苗(如:麻疹、脊髓灰质炎疫苗等)。活疫苗的优、缺点与活菌苗相同。
(2007·广东高考)某患儿胸腺先天性缺失,与正常儿童相比,该患儿 ( )
A.仍有部分细胞免疫功能 B.仍有部分体液免疫功能
C.体内的B淋巴细胞数目显著减少 D.体内的T淋巴细胞数目增加
【解析】B 胸腺是T细胞发育成熟的场所,在体液免疫中,大多数病原体经过吞噬细胞的摄取和处理,暴露出这种病原体所特有的抗原,将抗原传递给T细胞,再传递给B细胞;少数抗原直接刺激B细胞,B细胞经过增殖、分化成浆细胞和记忆细胞,浆细胞产生相应的抗体,与抗原发生特异性结合,使抗原失去活性,最终被吞噬细胞吞噬消灭。在细胞免疫中,抗原侵入到宿主细胞后,T细胞在接受抗原的刺激后,增殖、分化成效应T细胞和记忆细胞,效应T细胞与靶细胞特异性结合,激活靶细胞中的溶酶体酶,使靶细胞裂解死亡,使病原体(抗原)失去寄生的基础,最终被吞噬细胞吞噬消灭。因此,T细胞对于机体的体液免疫和细胞免疫都具有重要作用。若胸腺先天性缺失,导致T细胞无法发育成熟,体内的T淋巴细胞数目减少,使其丧失全部的细胞免疫,但能保留部分的体液免疫,因为少数抗原可以不需要T细胞的传递,直接刺激B细胞增殖、分化成浆细胞和记忆细胞,从而发挥体液免疫。因此对B淋巴细胞数目和体液免疫功能的影响相对较小。
必修3·第3章 植物的激素调节
一、植物生命活动调节的基本形式:激素调节
1、植物的向性运动
(1)概念:是植物体受到单一方向的外界刺激(如光、重力等)而引起的定向运动。
(2)外界刺激:光照、重力、温度、湿度、化学物质、各种射线等。
(3)原因:与生长素的调节有关
(4)类型
①向光性:茎的向光性、根的背光性
②向地性:根的向地性
③背地性:茎的背地性
④向水性:根对水的感受部位是根尖,有向水源生长的趋势,表现为向水性。
⑤向肥性:根的向肥性。当植物生长在一侧肥力充足,另一侧肥力不充足的条件下,肥力充足一侧的根生长的将明显发达,从而说明根的生长具有向肥性。
⑥向触性:植物器官在接触到固体而产生方向性的反应。这个方向性的反应是因生长改变所造成,例如豆科的卷须接触柱子后会产生缠绕反应。牵牛花花的茎和黄瓜卷须的前端接触到支架,就向接触的方向卷曲,边卷曲、边生长。
2、植物的感性运动
(1)概念:植物体受到不定向的外界刺激而引起的局部运动,称为感性运动。作用机理较为复杂,但是发生感性运动的器官多半具有腹、背两面对称的结构。
(2)类型
感性运动一般分为感夜性、感震性和感触性等,但各自的作用机理却有所不同。
①感夜性:主要是由昼夜光暗变化引起的。蒲公英的花序、睡莲的花瓣、合欢的小叶等昼开夜合;而烟草、紫茉莉、月见草等植物的花则相反是夜开昼合。
②感温性:温度变化而引起的,如郁金香从冷处移到暖处3min~5min就可开放。
③感震性:含羞草的感震运动是由于其复叶的叶柄基部叶褥细胞的膨压变化引起的。
④感触性
二、生长素的发现过程
1、达尔文的实验:过程:早在1880年达尔文父子进行向光性实验时,首次发现植物幼苗尖端的胚芽鞘在单方向的光照下向光弯曲生长,但如果把尖端切除或用黑罩遮住光线,即使单向照光,幼苗也不会向光弯曲。他们当时因此而推测:当胚芽鞘受到单侧光照射时,在顶端可能产生一种物质传递到下部,引起苗的向光性弯曲。
2、詹森的实验:过程:设置两个实验组:A组:将胚芽鞘顶端切掉,用单侧光照射,观察胚芽鞘的生长情况。 B组:在胚芽鞘顶端插入琼脂片,用单侧光照射,观察胚芽鞘的生长情况。 结果:A组直立生长,B组向光生长。 实验结论:胚芽鞘顶尖产生的刺激可以透过琼脂片传递给下部。(不足之处:该实验不能排除使胚芽鞘弯曲的刺激是由尖端产生,而不是由琼脂片产生。)
3、拜尔的实验:过程:拜尔在黑暗的条件下,将切下的燕麦胚芽鞘顶端移到切口的一侧,胚芽鞘会向另一侧弯曲生长。实验证明:胚芽鞘的弯曲生长,是因为顶尖产生的刺激在其下部分布不均匀造成的。
4、温特的实验:过程:A把放过尖端的琼脂小块,放在去掉尖端的胚芽鞘切面的一侧,胚芽鞘向对侧弯曲生长;B把未放过尖端的琼脂小块,放在去掉尖端的胚芽鞘切面的一侧,胚芽鞘不生长不弯曲。实验结论:胚芽鞘尖端产生了某种物质,并运到尖端下部促使某些部分生长。
5、1934年,荷兰科学家郭葛等人分离出该物质,化学名称吲哚乙酸,是在细胞内由色氨酸合成的,取名为生长素,它能促进细胞纵向伸长生长。生长素只能从形态学上端运输到下端,而不能倒过来运输。
胚芽鞘:单子叶植物胚芽外的锥形套状物。胚芽鞘为胚体的第一片叶,有保护胚芽中更幼小的叶和生长锥的作用。胚芽鞘分为胚芽鞘的尖端和胚芽鞘的下部,胚芽鞘的尖端是产生生长素和感受单侧光刺激的部位和胚芽鞘的下部,胚芽鞘下面的部分是发生弯曲的部位。
琼脂:能携带和传送生长素的作用;云母片是生长素不能穿过的。
琼脂,学名琼胶,英文名agar,又名洋菜,冻粉。主要是由石花菜、江蓠菜、鸡毛菜等红藻用热水提取出来的一种海藻多糖。是人类最早开始使用的胶凝剂。其特点是具有凝固性、稳定性,能与一些物质形成络合物等物理化学性质,可用作增稠剂、凝固剂、悬浮剂、乳化剂、保鲜剂和稳定剂。
云母是含锂、钠、钾、镁、铝、锌、铁、钒等金属元素并具有层状结构的含水铝硅酸盐族矿物的总称。主要包括白云母、黑云母、金云母、锂云母等。
6、生长素的发现对植物向光性的解释
①产生条件:单侧光
②感光部位:胚芽鞘尖端
③产生部位:胚芽鞘尖端
④作用部位:尖端以下生长部位
⑤作用机理:单侧光引起生长素分布不均匀→背光侧多→生长快(向光侧少→生长慢)→向光弯曲。
尖端是指顶端1mm范围内。它既是感受单侧光的部位,也是产生生长素的部位。尖端以下数毫米是胚芽的生长部位,即向光弯曲部位。
三、植物激素
1、生长素(IAA)
(1)化学成分:吲哚乙酸,分子式为C10H9O2N
(2)合成部位:植物体内的生长素主要在叶原基、嫩叶和正在发育着的种子中产生。成熟的叶片和根尖也产生少量生长素。
植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。
(3)运输
①横向运输:只有尖端才具有横向运输,从而导致生长素在尖端分布不均匀。而尖端以下部位不能横向运输。
②极性运输:生长素在植物体内的运输具有极性,即生长素只能从植物的形态学上端向下端运输,而不能向相反的方向运输,这称为生长素的极性运输。其它植物激素则无此特点。
③极性运输的原因:各细胞底部细胞膜上有携带生长素的载体蛋白,顶端细胞膜上没有这种蛋白质分子,生长素只能从细胞底部由载体蛋白带出再进入下面的细胞。故生长素只能从形态学的上端运输到形态学的下端,而不能从形态学的下端运输到形态学的上端(茎是由茎尖到基部,根也是由根尖到基部)。
【疑问与解答】
疑问:生长素只能从形态学上端运输到下端。请问什么是形态学上端呢?在根部生长素的运输是从分生区到伸长区,那么这是属于从形态学上端到下端还是从下到上呢?
解答:①在根部生长素的运输是从分生区到伸长区,那么这是属于从形态学上端到下端。先长出的部分称为形态学下端,后长出的称为上端。因此生长素都是由后长出的部分(上端)向先长出的部分(下端)运输。
②关于形态学上端和下端问题:一棵植物一般分为根,茎,叶等器官,植物一般直立生长,根一般生活在土壤里即地面以下,而茎叶等生活在地面以上。生长素产生部位一般是芽和幼叶,根尖也会产生生长素。但这些生长素要运输到作用部位。这里就涉及到运输方向的形态学上端和下端问题:以地面为基准,靠近地面的都是下端,远离地面的都是上端!对根来说,根尖是上端。对茎来说,茎尖是上端。生长素运输方向从形态学上端运输到下端,而不能倒过来运输!
④运输方式:主动运输(需载体,要耗能)
(4)分布:生长旺盛的部位(作用部位)
【疑问与解答】
疑问:植物体的根部生长素的分布到底是伸长区多还是分生区多?为什么?
解答:伸长区多,生长素的功能是促进细胞生长。产生分生区多、分布伸长区多。由分生区产生,通过植物形态学的上端向下端运输到伸长区。生长素总是由形态学上端向形态学下端运输的。
(5)作用机理:促进细胞的纵向伸长(细胞体积增大)
植物细胞的最外部是细胞壁,细胞若要伸长生长即增加其体积,细胞壁就必须相应扩大。细胞壁要扩大,就首先需要软化与松弛,使细胞壁可塑性加大,同时合成新的细胞壁物质,并增加原生质。实验证明,用生长素处理燕麦胚芽鞘,可增加细胞壁可塑性,而且在不同浓度的生长素影响下,其可塑性变化和生长的增加幅度很接近,这说明生长素所诱导的生长是通过细胞壁可塑性的增加而实现的。生长素促进细胞壁可塑性增加,并非单纯的物理变化,而是代谢活动的结果。因为,生长素对死细胞的可塑性变化无效;在缺氧或呼吸抑制剂存在的条件下,可以抑制生长素诱导细胞壁可塑性的变化。
(6)生理作用
①从细胞水平上看:生长素可以影响细胞的伸长、分化
②从器官水平上看:生长素可以影响器官的生长、衰老
③两重性:对于植物同一器官而言,低浓度的生长素促进生长,高浓度的生长素抑制生长。浓度的高低是以生长素的最适浓度划分的,低于最适浓度为“低浓度”,高于最适浓度为“高浓度”。在低浓度范围内,浓度越高,促进生长的效果越明显;在高浓度范围内,浓度越高,对生长的抑制作用越大。
④同一株植物的不同器官对生长素浓度的反应不同:根、芽、茎最适生长素浓度分别为10-10、10-8、10-4(mol/L)。细胞成熟情况:幼嫩的细胞对生长敏感,老细胞对生长素比较迟钝。植物类型:双子叶植物一般比单子叶植物对生长素敏感。
⑤两重性的典型现象——顶端优势
顶端优势又叫先端优势,是极性生长表现形式之一,是指植物的顶芽优先生长而侧芽受到抑制的现象。
产生的原因:由顶芽形成的生长素向下运输,使侧芽附近生长素浓度加大,由于侧芽对生长素敏感而被抑制;同时,生长素含量高的顶端,夺取侧芽的营养,造成侧芽营养不足。
顶端优势的原理在果树整枝修剪上应用极为普遍,人工切除顶芽,就可以促进侧芽生产,增加分枝数。在生产实践中经常根据顶端优势的原理,进行果树整枝修剪,茶树摘心,棉花打顶,以增加分枝,提高产
【疑问与解答】
疑问:生长素在第一侧芽的浓度为什么最高,而不向下运输到其他侧芽
解答:一般来说,顶芽是产生生长素最多的地方。而顶芽产生的生长素往下运输,离它越近的侧芽就积累越多。这是就近运输之原理。
疑问:为什么离顶芽近的侧芽处积累的生长素多呢 顶芽产生的生长素往下运输,侧芽产生的生长素也往下运输,那么离顶芽远的侧芽积累的生长素不是更多吗
解答:产生的同时也会被吲哚乙酸酶分解。第一侧芽积累最多,分解少;继续向下运输,分解快,逐渐减少。故松柏呈宝塔型。
疑问:牵牛花的茎可以缠绕在其它植物体上,如果测量幼茎靠近物体一侧和远离物体一侧的生长素浓度和细胞体积大小,则应该是:生长素浓度 是( ),细胞体积是( )。
解答:靠近物体的一侧生长素浓度低,远离物体的一侧生长素浓度高
靠近物体的一侧的细胞体积小,远离物体的一侧的细胞体积大
理由:远离物体的一侧,显然要长的长一些,即细胞体积伸长的大一些。而究其根本原因,是由于生长素分布不均造成。而对于茎来说,只有靠近物体的一侧生长素浓度低,远离物体的一侧生长素浓度高,才能造成远离物体一侧生长快。
疑问:生长素浓度对植物不同器官的影响效应相同的一组是 ( )
A.根的向重力性和茎的背重力性 B.植物的向光性和顶端优势
C.茎的背重力性和植物的向光性 D.根的向重力性和扦插枝条生根
解答:答案是C。
A.根的向重力性:生长素浓度高的一侧—长得慢;茎的背重力性:生长素浓度高的一侧—长得快
B.植物的向光性:生长素浓度高的一侧—长得快;顶端优势:生长素浓度高的一侧—长得慢
C.茎的背重力性:生长素浓度高的一侧—长得快;植物的向光性:生长素浓度高的一侧—长得快
D.根的向重力性:生长素浓度高的一侧—长得慢;扦插枝条生根:生长素浓度高的一侧—长得快
⑥生长素类似物的应用:a、在低浓度范围内:促进扦插枝条生根——用一定浓度的生长素类似物溶液浸泡不易生根的枝条,可促进枝条生根成活;促进果实发育;防止落花落果。b、在高浓度范围内,可以作为除草剂。
〖生长素与生长素类似物〗
生长素是植物激素,对植物生长发育起显著的作用,自然界的有吲哚乙酸、吲哚乙腈、4-氯吲哚乙酸等。
但生长素再植物体内合成极少,为了农业生产等方面,人们会合成一些类似物,主要有吲哚丙酸、吲哚丁酸、萘乙酸、萘氧乙酸、4-碘苯氧乙酸等。以达到催熟、插枝、无子果实等目的。
【经典试题·2007年广东】某同学发现了一株花色奇特的杜鹃花,于是采摘了部分枝条,打算用扦插的方式进行繁殖。下列关于该实验的叙述,正确的是
A.采摘的枝条中,芽较多的较嫩枝条相对来说更容易生根
B.生长素促进生根效果与生长素处理枝条的时间长短成正比
C.生长素类似物有一定的毒性,实验结束后应妥善处理废液
D.可发现两个不同的生长素浓度,促进根生长的效果相同
〖命题立意〗本题考查的是生长素及其类似物的作用与特点。
〖试题解析〗ACD 吲哚乙酸是生长素,不能作为诱变剂。不是顶芽产生的生长素少于侧芽,而是产生后就向下运输了,导致侧芽处积累的生长素多。受重力作用,生物素向下运输,向地侧生长素多,背地侧生长素低,说明根的背地侧生长得快,向地侧生长得慢,是因为背地侧生长素浓度过高,从而抑制了背地侧的生长。芽能产生生长素,促进生根,故A项是正确的。人工合成的植物生长发育有调节作用的化学物质称为植物生长调节剂,植物生长调节剂属于农药类,虽然它们的毒性一般是低毒或微毒,但是在使用中仍然要严格遵守安全操作规程,保证人、畜的安全。因此在实验结束后应妥善处理废液,故C项是正确的。生长素曲线是抛物线型的,除了顶点以外下面的部分生长效果相同(纵坐标)时对应的生长素浓度(横坐标)可能有两个,故D项是正确的。生长素促进生根效果与生长素处理枝条的时间长短没有因果关系,不呈现正相关,故B项是错误的。
2、其他植物激素
(1) 细胞分裂素:是一类具有腺嘌呤环结构的植物激素。
①合成部位:存在于正在进行细胞分裂的部位,主要是根尖。
②主要作用:促进细胞分裂和组织分化,植物组织培养中能影响植物细胞脱分化和再分化。
(2)赤霉素:是一类属于双萜类化合物的植物激素。
①合成部位:一般在幼芽、幼根和未成熟的种子中合成。
②主要作用:通过叶片、嫩枝、花、种子或果实进入植物体内,传导到生长活跃部位发生作用,促进细胞伸长,从而引起茎杆伸长和植株增高;能打破种子、块茎或鳞茎等器官的休眠,促进种子萌发和果实成熟。
(3)脱落酸:是一种具有倍半萜结构的植物激素。
①合成部位:根冠、萎蔫的叶片组织、成熟的果实、种子及茎等。
②分布部位:将要脱落的器官和组织中含量多。
③主要作用:抑制细胞分裂(脱氧核糖核酸和蛋白质的合成),促进叶和果实衰老和脱落。
(4)乙烯:是一种气体激素。
①合成部位:广泛存在于植物体的多种组织中,特别是在成熟的果实中含量较多。
②主要作用:促进果实的成熟。
【经典试题·2007年广东】在早春低温时为了让水稻种子早发芽,稻农常将种子置于流动的河流或溪水中浸泡一段时间。这种做法与下列哪种激素变化的相关性最大?
A.脱落酸 B.细胞分裂素 C.赤霉素 D.生长素
〖命题立意〗本题考查的是种子"催芽"与激素的关系。
〖试题解析〗A 种子休眠与种子中存在脱落酸有关,如桃、蔷薇的休眠种子的外种皮中存在脱落酸,所以只有通过层积处理,脱落酸水平降低后,种子才能正常发芽。水稻种子数量较大,用流水浸泡法更为实用。因此,在萌发前将种子浸泡在清水中,将脱落酸溶出后种子就能萌发。对促进种子萌发而言,选项里的激素C、D是直接促进, B是间接促进,只有A是抑制。
3、植物激素间的关系
①植物的一生,是受到多种激素相互作用来调控的。同时受遗传物质(基因在一定时间和空间上的程序性表达的结果)、光照、温度等环境因子变化的影响。
②植物组织培养时生长素与细胞分裂素含量变化引起的结果差异
在进行植物组织培养时,需要在培养基中添加适当比例的生长素和细胞分裂素,以诱导细胞的脱分化和再分化。但两者的比例变化后,诱导的结果是不同的:当生长素含量高于细胞分裂素时,主要诱导植物组织脱分化和根原基的形成(即有利于根的发生);当细胞分裂素含量高于生长素时,则主要诱导植物组织再分化和芽原基的形成(即有利于芽的发生)。(参见选修3 P43)
【疑问与解答】
疑问:生长素能促进生长,但它的作用又会被乙烯所抵消吗?
分析:这个问题要从生长素与乙烯的关系说起,生长素是具有绝对的促进生长作用的,而之所以在高浓度的情况下,却具有抑制作用。其实是因为当生长素的浓度达到一定时,能刺激乙烯的合成,而乙烯对植物生长的抑制作用,却抵消了生长素的促进作用。故高浓度的生长素表现出抑制作用。
解答:生长素能促进生长,但它的作用又会被乙烯所抵消的。
生长素的运输与茎的向光性
一、横向运输
1.作用机理
所谓横向运输就是指生长素由茎(光源)的一侧横向移动到另一侧(背光)的运输方式。由此造成的生长素分布不均匀实际上应与电荷分布有关。我们知道,生长素即吲哚乙酸(IAA)是带弱酸性的,在细胞中常以阴离子(IAA- )形式存在,而对植物来说,单方向的光照会引起器官尖端不同部位产生电势差,向光一侧带负电荷,背光一侧带正电荷。这样一来,生长素带弱酸性的阴离子则向带正电荷的背光一边移动,再向下运输,从而引起尖端下背光一侧生长素分布多,细胞纵向伸长(横向增粗)快,向光一侧分布少,细胞纵向伸长(横向增粗)慢,使植物弯向光源生长。
那么植物在怎样的条件下会发生横向运输?
2.影响横向运输的因素
单侧光:生长素发生横向运输引起向光性与单侧光密切相关。
为什么单侧光会引起横向运输?
主要是由于植物的受光不均匀。假如将照射植物的单侧光改成直射光使之受光均匀或不照光,则植物不出现向光性生长。这是因为在这种情况下,电荷分布均匀,此时生长素只进行极性运输,而不表现横向运输,说明单侧光是引起生长素横向运输的原因之一。
尖端:横向运输不可缺少的部位。
横向运输确实只发生在尖端部位,为什么其他部位不能发生?
这是因为横向运输要发生除单侧光和生长素外,还得看其是否有对光敏感的物质存在,即与能感受光刺激部位有关,因为无论哪种刺激,它们作用于细胞的首要条件是能够为细胞所识别和接受,茎的尖端存有对光敏感的物质,是感受光刺激的部位;若植物具有该部位,就能接受光的刺激(识别)从而引起电荷的分布不均匀,促进产生的生长素进行横向运输,若生长素位于琼脂上,琼脂块是无活性的,其上无对光敏感的物质分布。故对光不敏感,不能接受光刺激,也就无电荷分布不均匀的问题,不出现横向运输,不表现向光性。同理,植物尖端以下也没有对光敏感的物质不能接受光刺激,也就无横向运输
阻隔物:假如作处理(云母片——不透水)则不发生向光性,也就是说横向运输没有进行;且生长素不能发生绕道的横向运输,其尖端下部也不发生横向运输。其实横向运输还受重力的影响如根的向地性,茎的负地性生长。琼脂:能携带和传送生长素的作用;云母片是生长素不能穿过的。
横向运输发生在尖端造成尖端生长素分布不均匀,但为什么发生弯曲的部位却在尖端下呢?原来,光有横向运输还不足以引起茎的向光性,茎的向光性还与另一运输方式——极性运输有关。
二、极性运输
我们知道,植物产生生长素的部位往往是顶端分生组织,如茎尖、芽尖。但发生弯曲的部位却在尖端下一点,其它各处如何获得生长素 ——通过极性运输获得。
1.作用机理
极性运输在促进植物的生长中极为重要,单侧光引起生长素分布后若没有极性运输,向光性是难以实现的。所谓极性运输是指从植物形态学的上端向下端运输,而不能倒转。如:将植物幼苗切下倒置,生长素就会从位于下面幼苗的顶端向上运输。现在我们已经知道,生长素的极性运输属于一种主动运输,需要能量和载体蛋白,而携带生长素的载体蛋白位于细胞底部细胞膜上,顶部则没有,这就促使IAA分子(生长素分子)在薄壁组织中(或韧皮部中)顺序穿过一个个细胞向植株下部运行,不断从细胞底部由载体带出再进入下一个细胞;若倒过来则由于细胞顶端无IAA载体而运不出去,不能进行下一个细胞。如顶端优势就是一个很好的极性运输的例子。
2.极性运输实现了细胞的伸长
一个细胞通过极性运输获得生长素,则表现出伸长,这种伸长实质上在于生长素促进了细胞的纵向伸长(横向增粗)。而这又是通过改变细胞壁的可塑性来实现的。IAA进行运输时,IAA进入细胞就解离为负离子IAA- 并与质膜上的质子泵结合,引起H+ 分泌到细胞壁上,使之环境酸化。造成对酸不稳定的键断裂,使细胞纤维素结构间交织点破裂,联系松弛,细胞可以延长。由于尖端下细胞还未完全成熟,更易受酸性环境影响表现出伸长。故在此处若生长素不均匀,在适宜范围内,量多一方更易加快细胞壁酸化,使细胞伸长更快。然而极性运输虽然时时刻刻都在进行,但其本身只是造成生长素从上向下流动,而不会引起同一部位分布不均匀。
由上可知,生长素的横向运输和极性运输共同对向光性发挥作用,其中横向运输主要是引起生长素分布不均匀,这种不均匀引起的植物向光性又与生长素促进细胞伸长速度不一样分不开,导致生长不均匀而发生弯曲。其实茎向光性生长是一个复杂问题,并不是有横向运输就一定有向光性生长,还可能受到多种因素的影响,如生长抑制物的分布等,目前还在进一步探索,故我们应具体问题具体分析。
必修3·第4章第1节 种群的特征
一、种群
1、概念:种群是指生活在同一地点的同种生物的一群个体,是在一定空间和时间内的同种生物个体的总和。种群中的个体通过繁殖将各自的基因传递给后代(能自由交配、繁殖),种群是生物进化和繁殖的基本单位。
2、举例:一个池塘里的全部鲫鱼、一个蜂巢中的所有蜜蜂
二、种群的特征
1、种群密度:
(1)概 念:是指单位空间(单位面积、体积)内某种群的个体数量。种群密度是种群最基本的数量特征,种群密度越高,一定范围内种群数量越多。种群数量与种群密度呈正相关。
(2)特 点:随种群的不同、环境的改变有差异。
(3)调查方法:
①总数调查:调查分布范围较小,个体较大的种群,逐个计数。
②取样调查:调查分布范围较大的种群,一般总数调查较难,计数种群一部分,估算种群密度。
1.1样方法
(1)取样调查中的两个概念
①样 方: 样方也叫样本,从研究对象的总体中抽取出来的部分个体的集合,叫做样方。
②随机取样: 在抽样时如果总体中每一个个体被抽选的机会均等,且每一个个体被选与其他个体间无任何牵连,那么,这种既满足随机性,又满足独立性的抽样,就叫做随机取样(或叫做“简单随机取样”)。随机取样不允许掺入任何主观性,否则,就难以避免调查人员想获得调查属性的心理作用,往往使调查结果偏大。
③适用范围:植物种群密度,昆虫卵的密度,蚜虫、跳蝻的密度等。
(2)常用取样
①点状取样法
点状取样法中常用的为五点取样法,如图4—1A,当调查的总体为非长条形时,可用此法取样。在总体中按梅花形取5个样方,每个样方的长和宽要求一致。这种方法适用于调查植物个体分布比较均匀的情况。
②等距取样法
当调查的总体为长条形时,可用等距取样法,如图4—1B,先将调查总体分成若干等份,由抽样比率决定距离或间隔,然后按这一相等的距离或间隔抽取样方的方法,叫做等距取样法。例如,长条形的总体为100 m长,如果要等距抽取10样方,那么抽样的比率为1/10,抽样距离为10 m,然后可再按需要在每10 m的前1 m内进行取样,样方大小要求一致。
(3)调查草地中某种双子叶植物的种群密度
①探究原理:(样方法)在被调查种群的分布范围内,随机选取若干个样方,通过计数每个样方内的个体数,求得每个样方的种群密度,以所有样方种群密度的平均值作为该种群的种群密度估计值。
②制定计划:确定调查地点和范围→确定调查时间→讨论需要携带材料用具,列出清单→讨论小组成员分工。
③实施计划准备→确定调查对象→确定样方的多少、大小和取样方法→计数→计算种群密度。
④注意事项
a.植物种群密度调查地点的选择。调查地段的选择应当大小适中,面积过大费时费力,面积过小则失去调查意义,选取平坦、开阔、被调查种群分布比较均匀的地段。
b.根据调查对象划定调查地段的大小。植物种群密度的调查对象可以是乔木、灌木和草本,调查乔木的种群密度时,地段应该划得大一些;调查草本植物的种群密度时,地段应该划得小一些;调查灌木时,调查地段的大小则应该介于二者之间。如乔木的样方为100 m2,灌木为16 m2,草本为1 m2。
c.调查植物种群密度时,对植物种类的选择。调查乔木和双子叶草本植物比较容易,而调查一些丛生小灌木,丛生或蔓生的草本单子叶植物,从地上部分难以辨别一株还是多株,所以初学者选择双子叶草本植物调查。
d.调查时间。取样调查的时间最好选择在植物生长旺盛的季节。
e.计数原则。若有正好长在边界线上的,应遵循“计上不计下,计左不计右”的原则;即只计数样方相邻两条边上的个体。同种植物无论大小都应计数。如图4—2。
注意:图甲为方形样方,图乙为圆形样方,实心圈示统计或测量的个体,虚线表示圆形样方的直径。
⑤调查误差分析。对调查对象认识不准,统计偏差;样方的数目、大小不统一;调查地段种群分布不均匀;计数时对各生长期的个体统计不全。
⑥调查记录样表及计算公式(表4—1)
样方 X1 X2 X3 X4 X5 X6 X7 X8
种群密度(株/m2) 3 4 7 15 2 4 9 8
某植物种群密度=所有样方内种群密度合计/样方数
答案:6.5株/m2
1.2标志重捕法
(1)概 念:在被调查动物种群的活动范围内捕获一部分个体,做上标记后再放回原来的环境,经过一段时间(标志个体与未标志个体重新充分混合分布)后,进行重捕,据重捕动物中标记个体数占总个体数的比例,来估计种群密度。
(2)前提条件:标志个体与未标志个体在重捕时被捕的概率相等。在调查期内没有新的出生和死亡,没有迁入和迁出。
(3)适用范围:活动能力强和范围大的动物如哺乳类、鸟类、爬行类、两栖类、鱼类和昆虫等动物。(4)注意事项:
①标志不能过分醒目。
②标志物和标志方法必须对动物的身体不会产生对于寿命和行为的伤害。
③标志符号必须能够维持一定的时间,在调查研究期间不能消失。
(5)计算公式
2.出生率和死亡率
(1)概念:
出生率:种群单位数量的个体在单位时间内新产生的个体数目。
死亡率:种群单位数量的个体在单位时间内死亡的个体数目。
(2)意义:决定种群大小和密度。对一个自然种群来说,影响种群数量变动的主要因素是出生率和死亡率。
3.迁入率和迁出率
(1)概念:单位时间内迁入和迁出的个体,占该种群个体总数的比例。
(2)意义:直接影响种群的数量变动,如城市人口的变化。
4.年龄组成
(1)概念:一个种群中各年龄期的个体数目的比例。
(2)类型:(表4—2)
类型 图例 年龄比例 出生率与死亡率大小 种群密度变化
增长型 年幼个体大于年老个体数 出生率>死亡率 增大
稳定型 各年龄期个体比例适中 出生率≈死亡率 稳定
衰退型 年幼个体小于年老个体数 出生率<死亡率 减小
(3)意义:预测未来种群动态变化。年龄组成是预测种群密度未来变化趋势的重要依据,是作为预测一个种群的种群数量的决定因素。
5.性别比例
(1)概念:种群中雌雄个体数目的比例。
(2)类型:一雌一雄、一雄多雌、一雌多雄。
(3)意义:直接影响出生率,间接影响种群密度。
6.种群特征间的相互关系
①种群密度是种群最基本的数量特征。种群密度越高,一定范围内种群数量越多。种群数量与种群密度呈正相关。
②对一个自然种群来说,影响种群数量变动的主要因素是出生率和死亡率。
③出生率和死亡率、迁入率和迁出率是决定种群数量的直接因素。
④年龄组成是预测种群密度未来变化趋势的重要依据,是作为预测一个种群的种群数量的决定因素。
⑤性别比例在一定程度上也能够影响种群数量的变化。
⑥年龄组成和性别比例通过影响出生率和死亡率间接影响种群密度和种群数量。
⑦影响种群数量的主要因素:年龄组成、性别比例、出生率和死亡率。
7.种群的空间特征
(1)概念:组成种群的个体在其生活空间中的位置状态或布局。
(2)类型:(表4—3)
项目类型 特点 原因 模式图 实例
均匀分布 种群内的各个体的分布是等距离的。 种群个体间的激烈竞争引起。 浮游植物、森林乔木、面粉中的黄粉虫等。
随机分布 种群内每个个体在任一空间的分布概率相等。 环境资源分布均匀一致、种群个体间互不作用引起。 森林中的无脊椎动物等。
集群分布 种群的个体集中在特定的几个点上。 环境资源分布不均匀;植物传播种子以母株为扩散中心;动物的社会行为使其结合成群。 自然界中生物多为集群分布。
(3)意义:了解空间分布格局对于选择种群密度的统计方法有重要意义。
必修3·第4章第2节 种群数量的变化
一、建构种群增长模型的方法
1、数学模型:数学模型是用来描述一个系统或它的性质的数学形式。
2、实 例:(以细菌为例)
研究方法 研究实例
提出问题 观察研究对象,提出问题 细菌每20min分裂一次
模型假设 提出合理的假设 在资源和空间无限的环境中,细菌的种群增长不会受密度影响。
建立模型 根据实验数据,用适当的数学形式对事物的性质进行表达 Nn=2n N 代表细菌数量,n表示第几代。
修正检验 通过进一步实验或观察等,对模型进行检验或修正。 观察、统计细菌数量,对自己所建立的模型进行检验或修正。
数学模型
二、种群数量的变化
1、种群数量变化的原因
种群中个体有出生、死亡、迁入和迁出等变化,出生和迁入导致种群数量增加,死亡和迁出导致种群数量减小,因此种群数量有增长、波动、稳定和下降等变化过程。?
2、影响种群数量变化的因素
种群的数量是由出生率和死亡率、迁入和迁出决定的,种群的数量变化是出生和死亡、迁入和迁出相互作用的综合结果,所有能影响种群的出生率、死亡率和迁入、迁出的因素,都会影响种群数量的变化。
①种群特征的影响(同一种群内部影响):?
年龄组成是决定和预测种群将来发展趋势的最主要因素。种群的性别比例改变或性别比例失调,将导致生殖上的混乱,从而引起种群数量变化。如:用性引诱剂诱杀害虫的雄性个体而改变性别比例,使出生率降低。?
②种间关系的影响:
互利共生、竞争、捕食等不同物种个体之间的关系可使研究的种群数量增加或减少。?
③无机环境对种群数量的影响:环境中的一些非生物因素,如水分、温度、食物等因素在特殊情况下能影响种群的出生率和死亡率,进而引起种群数量的变化。
3、研究种群数量变化的意义:在野生生物资源的合理利用和保护、害虫的防治等方面有重要意义。种群数量大于1/2K时,可猎取某野生生物资源。
三、比较“J”型曲线和“S”型曲线
项 目 “J”型曲线 “S”型曲线
含 义 指在食物(养料)和空间条件充裕,气候适宜、没有敌害等理想条件下,不受资源和空间的限制,种群的数量往往会连续增长。它反映了种群增长的潜力。 指种群在一个有限的环境中增长时,当种群数量达到环境条件所允许的最大值(环境容纳量,K值)时,种群数量将停止增长,有时会在最大容纳量上下保持相对稳定。一般情况下,种群数量为1/2K时,增长速率达最大值。
前提条件 环境资源无限 环境资源有限
λ 保持不变 随种群密度上升而下降
种群增长率 保持稳定 随种群密度上升而下降
种群增长速率 随种群密度上升而上升 随种群密度上升而上升,到一定密度再下降
K值(环境容纳量) 无K值 种群数量在K值上下波动
曲 线
①指数式增长
不受资源和空间的限制,种群的数量往往会连续增长。以某种动物为例,假定种群的数量为N0,λ表示该种群数量是前一年种群数量的倍数,该种群每年的增长率都保持不变,那么:
一年后该种群的数量应为:N1=N0·λ
二年后该种群的数量为:N2=N1·λ=N0·λ2
t年后该种群的数量应为:Nt=N0·λt
据此方程绘出的曲线为“J”型。种群的指数式增长模式在理论上是存在的,但在自然生态系统中几乎是不可能存在的,因为资源、空间和食物不可能是无限的,即使在实验条件下也无法做到。
②环境容纳量(K值):在环境条件不受破坏的情况下,一定空间中所能维持的种群最大数量称为环境容纳量,又称K值。
四、几组概念的辨析
1.λ:表示相邻两年(生物的两代)种群数量的倍数。在公式Nt=N0λt中,N0表示起始数量,λ表示相邻两年(生物的两代)种群数量的倍数,t表示年数或生物的繁殖代数。λ=N1/N0;增长率=(N1-N0)/N0×100%=(λ-1)×100%。
2.增长率:增长率是指单位时间种群增长数量,[增长率=出生率—死亡率=出生数-死亡数)/(单位时间×单位数量)]。在“J”型曲线增长的种群中,增长率保持不变;而在“S”型增长曲线中增长率越来越小。
3.增长速率:增长速率是指单位时间内种群数量变化率,[增长速率=(出生数-死亡数)/单位时间]。种群增长速率就是曲线上通过每一点的切线斜率,不论是“J”型曲线还是“S”型曲线上的斜率总是变化着的。在“J”型曲线增长的种群中,增长速率是逐渐增大。在“S”型曲线增长的种群中,“增长速率”是该曲线上“某点”的切线的斜率,斜率越大,增长速率就越大,且斜率最大时在“ 1/2K”。之后增长变慢,增长速率是逐渐减小。在“S”曲线到达K值时,增长速率就为0。
4.在“J”型增长曲线中,每年的增长率不变(如图A);由于“J”型增长曲线的斜率是在不断变化的,逐渐增大,直至无穷,所以其增长速率也就不断增大(如图B)。
5.在“S”型增长曲线中,每年的增长率由最初的最大值,在环境阻力(空间压力、食物不足等)的作用下,导致出生率下降、死亡率上升,种群数量到达最大值(K值),其增长率不断下降至0,故在“K”时,其增长率为0(如图C);而增长速率会有先升后降的变化过程,呈现钟罩形变化曲线,即在“S”型曲线中,开始时斜率为0,斜率逐渐增大,增长速率也就越大,且斜率在 1/2K时最大,即在“ 1/2K”时增长速率最大,过后,斜率下降,在K值时降至为0,故在“K”时,其增长速率为0(如图D)。
五、疑问与解答
1.为了保护鱼类资源不受破坏,并能持续地获得最大捕鱼量,根据种群增长的“S”型曲线,应使被捕鱼群的种群数量保持在 1/2K水平,这是因为在这个水平上 ( )
A.种群数量相对稳定 B.种群增长量最大
C.种群数量最大 D.环境条件所允许的种群数量
【解答】B 根据种群增长的“S”型曲线,当被捕鱼群的种群数量保持在 1/2K值水平的时候,从曲线上看正好相当于“J”型曲线,种群增长量最大,或者说种群的个体数量增长最快。不是C项所说的“种群数量最大”,更不是D项所说的“环境条件所允许的种群数量最大”。当然也远远没有达到A项所说的“种群数量相对稳定”的水平。答案:B。
2、下列有关种群增长的“S”型曲线的叙述,错误的是 ( )
A.通常自然界中的种群增长曲线最终呈“S”型 B.达到K值时种群增长率为零
C.种群增长受自身密度的影响 D.种群的增长速率逐步降低
【解答】D A项中由于空间和资源的限制,因此自然界中的种群增长曲线通常呈“S”型;对于“S”型曲线来说,种群在 1/2K时增长速率最大,然后种群的增长率随种群密度的上升而下降,当达到环境所允许的最大值(环境容纳量,K值)时,增长率降为0,所以B项的说法正确;种群数量的增加除受环境因素影响外,随着种群密度的增加,种内斗争也会加剧,影响种群数量的增长,因此C项说法也是正确的;种群数量的增长速率是先逐渐升高,当种群数量大于 1/2K时,种群增长速率开始降低。
六、解读种群增长的“S”型曲线
当种群在一个有限的环境中增长时,随着种群密度的上升,个体间对有限空间、食物和其他生活条件的种内斗争必将加剧,以该种群为食的捕食者的数量也会增加,这就会使这个种群的出生率下降,死亡率增高,从而使种群数量的增长率下降,当种群数量达到环境所允许的最大容量(环境容纳量,K值)时,种群数量将停止增长,即此时的增长率为 0,有时会在最大值上下保持相对稳定。当种群数量增长到 1/2K 值时,曲线有一拐点 P,在 P 点种群的增长速率最快,可提供的资源也最多,而又不影响资源的再生。当大于 1/2K 值时,种群增长的速率将开始下降。
因此,在对野生动植物资源的合理开发和利用方面,当种群数量大于1/2K值时就可以猎取一定数量的该生物资源,而且获得的量最大,当过渡猎取导致种群数量小于 1/2K 值时,种群的增长速率将会减慢,获得的资源量也将减少,而且会影响资源的再生。所以在猎取资源时应注意保证剩余量在1/2K值以上,这样才会有利于资源的再生和可持续发展。
七、种群数量的波动与下降
1、波动的原因:气候因子、竞争、捕食、寄生、营养、疾病等。
2、周期性波动:原因较复杂,捕食和食物是影响因素之一。一般捕食种群数量达到高峰和低峰的时间总比资源种群(猎物者)晚,这种差异是由资源种群对捕食者影响的时滞效应所致。
必修3·第4章第3节 群落的结构
一、生物群落
1、概念:生物群落是指生活在一定的自然区域内,相互之间具有直接或间接关系的各种生物群落的总和。 包括植物、动物和微生物。
2、实 例:一个池塘中的全部生物(一个池塘中的全部鱼——应该是多个种群)
3、物种丰富度:群落中物种数目的多少,是群落的首要特征。不同的群落,物种丰富度有差别,如热带雨林生物种类多,丰富度大;草原生物种类较少,丰富度小。
二、物种、种群、群落和生态系统之间的关系
(1)概念不同:种群是指生活在同一地点的同种生物的一群个体,而物种则指分布在一定的自然区域,具有一定的形态结构和生理功能,而且在自然状态下能够相互交配和繁殖,并能够产生出可育后代的一群生物个体。
(2)范围不同:一般来讲,种群是指较小范围内的同种生物的个体,而物种是由许多分布在不同区域的同种生物和种群组成的。由于两者概念的角度不同,不能进行比较其范围的大小关系。种群是种内关系的研究范围,是组成群落的基本单位。而群落是种间的研究范围,是生态系统的生物成分。
(3)判断标准不同:种群是同一地点的同种生物,它通过个体间的自由交配而保持一个共同的基因库。物种的判断标准主要是形态特征和能否自由交配并产生可育后代。不同的物种间有明显的形态差异,凡属于同一个物种的个体,一般能自由交配并产生可育后代,不同物种的个体,一般不能交配,即使交配也往往不育。
注意:全世界的人群(不分肤色、国别、年龄、性别)是一个种群;全世界的水稻也是一个种群。一群牛、羊、马,就不是一个种群,而是多个种群。
判断某一地域中的生物是否是一个种群的关键是这些生物是否是同一种生物。
(4)种群强调同种生物个体集合而成,群落所强调的是某区域内的所有生物群体(异种生物之间有规律的联系),因此不能说成某区域内的某些或几种生物的群体。种群与群落是部分与整体的关系,即某区域中所有同种生物的集合是一个种群,而该区域中的所有生物的集合才是一个群落。生态系统是指生物群落及无机环境相互作用的自然系统,它强调生物群落与无机环境的相互作用。
(5)种群能够组成群落必须具备两个基本条件:①它们必须适应于共同的非生物环境;②它们内部的关系必须取得协调,即共同适应它们所处的生物环境。也就是说生物群落有一定的生态环境,在不同的生态环境中有不同生物群落。
三、群落中的生物关系
1、种内关系(同种生物个体与个体、个体与群体、群体与群体之间)
(1)种内互助 特点:群聚生活。如:昆虫、鸟、鱼和哺乳动物等。 意义:有利于捕食、御敌、抵抗不良环境、繁衍后代等。
(2)种内斗争 原因:争夺食物、空间、配偶等。 意义:对失败者不利,但对种的生存是有利的。可以发生于同种动物或同种植物或同种其他生物之间。如鲈鱼食本物种幼鱼,蝌蚪排毒使幼小个体死亡。
2、种间关系(不同种生物之间的关系)
(1)互利共生(同生共死): 两种生物共同生活在一起,相互依赖、彼此有利,分开后双方或一方不能生存。如豆科植物与根瘤菌;人体中的有些细菌;地衣是真菌和藻类的共生体
(2)捕食(此长彼消、此消彼长):一种生物以另一种生物为食物的现象。可以是动物捕食动物、动物捕食植物等,分开对被捕食者有利。如:兔以植物为食;狼以兔为食。
(3)竞争(你死我活):两种或两种以上生物相互争夺资源和空间等。竞争的结果常表现为相互抑制,有时表现为一方占优势,另一方处于劣势甚至灭亡。可发生于植物与植物之间或动物与动物之间等,分开后对双方都有利。如:大小草履虫;水稻与稗草等。
(4)寄生(寄生者不劳而获):一种生物寄居在另一种生物体内或体表,从那里吸取营养物质来维持生活的现象(被寄生者叫宿主)。分开后,寄生者难以单独生存,而对宿主生存有利。①体内寄生:人与蛔虫、猪与猪肉绦虫;②体表寄生:小麦线虫寄生在小麦籽粒中、蚜虫寄生在绿色植物体表、虱和蚤寄生在动物的体表、菟丝子与大豆。③胞内寄生:噬菌体与大肠杆菌等。
类型 曲线图例 箭头图例 种间关系
互利共生 两种生物生活在一起,彼此有利,相互依存,如地衣、根瘤、白蚁与鞭毛虫等。
捕食 捕食者种群的数量和猎物者种群的数量呈周期性的波动,且捕食者数量高峰变动滞后于猎物者。
竞争 C代表共同的生活条件,结局有三,①两种群个体间形成平衡;②A取代B;③二者在空间、食性、活动时间上产生生态位的分离。
寄生 寄生种群A得利,宿主种群B有害,寄生物一般比宿主小,如蛔虫与人。
四、群落的空间结构
1、垂直结构:植物群落的垂直结构表现垂直方向上的分层性。
森林的地上成层结构一般分为乔木层、灌木层、草本层和苔藓-地衣层;草本群落地上部分一般分为上(高草层)、中(中草层)和下(矮草层)三层;水生群落的层次性主要是由光的穿透性、温度和氧气的垂直分布决定的。
夏天,一个层次性较好的湖泊自上而下可以分为表水层(水的循环性比较强)、斜温层(湖水温度变化比较大)、静水层(水的密度最大,水温大约4℃)和底泥层等四层(如下图所示)。表水层是浮游植物活动的主要场所,光合作用也主要在这里进行。动物、植物残体的腐败和分解过程主要发生在底泥层。
群落的层次性越明显,分层越多,群落中的动物种类也越多。草原的层次比较少,动物的种类也比较少;森林的层次比较多,动物的种类也比较多。在水生群落中,生物的分布和活动性在很大程度上是由光、温度和含氧量的垂直分布所决定的。
【疑问与解答】
1.如何理解植物的垂直结构和水平结构?
解答:①在垂直方向上不同种生物分布在不同高度,在水平方向上不同种生物分布在不同区域。
②植物的垂直结构:小草、灌木、乔木等垂直方向上的分层现象;水平结构:水平方向上地形起伏、光线明暗、湿度大小等是植物不同。湖泊中的生物群落的分层现象,例如:鲢鱼栖息在水体的上层,鳙鱼栖息在水体的中上层,草鱼栖息在水体的中下层,青鱼、蚌、螺蛳等栖息在水体的底层。湖泊中的生物群落的分层属于垂直分布。
③补充:对于动物的分布,垂直分布,如飞禽和走兽;水平分布,如各种不同地形生活的动物。
2.森林群落中,下层植物较上层植物光合作用强度低,因为下层 ( )
A.光照强度较弱 B.红光及蓝紫光比例较低 C.湿度较高 D.温度较高
解答:AB 本题是一道生物群落的垂直分布与物理知识的综合应用题。森林群落(或海洋藻类)有分层现象,其主要原因是光透射的强度及光谱的区别所致,使各种生物都能充分利用光能,提高光能利用率。随高度的下降,红光由于波长较长,穿透力较弱,光照越来越弱,当然红光和蓝紫光被上层植物所吸收了。而它们也正是植物所能利用的最有效光波,因此下层的植物光合作用较弱。
2、水平结构
在水平方向上由于光照强度地形明暗湿度等因素的影响,不同地段上分布着不同的生物种群。群落内水平的二维空间中生态因子常常不均匀,如林冠光照的不均匀性,造成下层植物不均匀,光照强处生长阳生植物,光照弱处生长阴生植物,几乎全部郁闭的树冠下,很少有草本植物。
【疑问与解答】
1.动物群落没有水平结构,这句话对吗?
解答:错的。①群落的话应该是指在这个范围内所有的生物,说动物群落是不正确;②即动物群落也会出现,例如由于水份的含量动物也会出现水平方向上的不同的分布。动物的分布依赖植物的分布。(由于植物为动物提供栖息条件和食物资源,所以因植物而出现水平结构。如草场的边缘与中心地带,湿地生态系统等。)
2.影响生物群落在水平方向上分布的因素不包括 ( )
A.光照的明暗 B.地形的起伏 C.温度的高低 D.种群的特征
答案是D,为什么影响生物群落在水平方向上分布的因素包括温度的高低?是不是从纬度不同来考虑?选D的原因又是什么呢?
解答:引起不同形式水平分布的原因是多方面的。有人特别重视生态因素所表现的环境因素的不等性或特殊性。例如,地形的差异、土壤性质的不同、光照的强