中小学教育资源及组卷应用平台
2021-2022浙教版九上第二章简单事件的概率常考必刷题
时间120分钟
满分120分
一.选择题(每小题3分,共36分)
1.(2021?齐齐哈尔三模)四个相同的不透明的袋子都装有除颜色外无其它差别的小球.从这四个袋子中分别随机摸出一个球,摸到红球可能性最大的是( )
A.有1个红球和2个白球的袋子
B.有2个红球和3个白球的袋子
C.有3个红球和4个白球的袋子
D.有4个红球和5个白球的袋子
2.(2021?山西模拟)袋子中装有20个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则下列说法正确的是( )
A.这个球一定是黑球
B.摸到黑球、白球的可能性相同
C.这个球可能是白球
D.事先能确定摸到什么颜色的球
3.(2021?郴州)下列说法正确的是( )
A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨
B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯
C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖
D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上
4.(2021春?太原期末)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是( )
A.通过抛一枚均匀硬币确定篮球赛中谁先发球是公平的
B.大量重复抛一枚均匀硬币,出现正面朝上的频率稳定于
C.连续抛一枚均匀硬币10次可能都是正面朝上
D.连续抛一枚均匀硬币2次必有1次正面朝上
5.(2021?梧州)一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )
A.
B.
C.
D.
6.(2021?海南)在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是( )
A.
B.
C.
D.
7.(2021?广西)如图,小明从A入口进入博物馆参观,参观后可从B,C,D三个出口走出,他恰好从C出口走出的概率是( )
A.
B.
C.
D.
8.(2020?盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:
身高x/cm
x<160
160≤x<170
170≤x<180
x≥180
人数
60
260
550
130
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是( )
A.0.32
B.0.55
C.0.68
D.0.87
9.(2021春?靖边县期末)在一个不透明的盒子中装有若干个黑球和白球,这些球除颜色外其余均相同,将球搅匀后任意摸出一个球,记下颜色后放回,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,则摸到白球的概率约为( )
A.0.8
B.0.3
C.0.2
D.0.5
10.(2021春?陈仓区期末)在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球试验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球的个数可能是( )
A.2个
B.4个
C.18个
D.16个
11.(2021春?烟台期末)如图,左边是数学节小明自己制作的七巧板,右边是用这幅七巧板拼出的小鸟图案,一只蚂蚁在右图上任意爬行,若它停右图上任意一点的可能性相同,求停在小鸟头部三角形板(即①)上的概率是( )
A.
B.
C.
D.
12.(2017秋?东营区校级期末)甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为7”算甲赢,掷出“和为8”算乙赢,这个游戏是否公平?( )
A.公平
B.对甲有利
C.对乙公平
D.不能判断
二.填空题(每小题4分,共24分)
13.(2021春?建平县期末)转动如图的转盘(转盘中各个扇形的面积都相等),当它停止转动时,指针指向标有数字
的区域的可能性最小.
14.(2021春?济南期末)某人连续抛掷一枚质地均匀的硬币3次,结果都是正面朝上,则他第四次抛掷这枚硬币,正面朝上的概率为
.
15.(2021?西宁)从﹣,﹣1,1,2,﹣5中任取一个数作为a,则抛物线y=ax2+bx+c的开口向上的概率是
.
16.(2021春?项城市期末)箱子内有m个除颜色外其它完全相同的球,若这m个球中白球有6个,每次将球搅拌均匀后,任意摸出一个再放回去,通过大量重复实验发现摸出白球的频率稳定在20%,则推算m大约是
.
17.(2021?佛山校级三模)从,,0,﹣2,π,这五个数中随机抽取一个数,恰好是无理数的概率是
.
18.(2014秋?唐河县期末)如图,“石头、剪刀、布”是民间广为流传的游戏.距报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,那么两人打平的概率P=
.
三.解答题(共60分)
19.(10分)(2021春?郓城县期末)甲袋中有红球8个、白球5个和黑球12个;乙袋中有红球27个、白球35个和黑球16个.
(1)如果你想取出1个黑球,选哪个袋子成功的机会大?请说明理由;
(2)如果你想取出1个红球,选哪个袋子成功的机会大?请说明理由;
(3)“从乙袋中取出红球10个后,乙袋中的红球个数仍比甲袋中红球个数多,所以此时若想取出1个红球,选乙袋成功的机会大”.你认为此说法正确吗?为什么?
20.(10分)(2021春?中宁县期末)如图,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字.
两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,则猜数的人获胜,否则转动转盘的人获胜.猜数的规则从下面三种中选一种:
(1)猜“是奇数”或“是偶数”;
(2)猜“是3的倍数”或“不是3的倍数”;
(3)猜“是大于6的数”或“不是大于6的数”.
如果轮到你猜数,那么为了尽可能获胜,你将选择哪一种猜数方法?怎样猜?请说明理由!
21.(10分)(2018?百色)密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××
小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是
.
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;
(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.
22.(10分)(2018?新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.
请根据统计图解答下列问题:
(1)本次调查中,杨老师一共调查了
名学生,其中C类女生有
名,D类男生有
名;
(2)补全上面的条形统计图和扇形统计图;
(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.
23.(10分)(2019?雅安)某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.
根据统计图:
(1)求该校被调查的学生总数及评价为“满意”的人数;
(2)补全折线统计图;
(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?
24.(10分)(2010?常州)如图所示,小吴和小黄在玩转盘游戏时,准备了两个可以自由转动的转盘甲、乙,内阁转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜否则小黄胜.(如果指针恰好在分割线上,那么重转一次,直到指针指向某一扇形区域为止)
(1)这个游戏规则对双方公平吗?说说你的理由;
(2)请你设计一个对双方都公平的游戏规则.
2021-2022浙教版九上第二章简单事件的概率常考必刷题
参考答案与试题解析
一.选择题
1.(2021?齐齐哈尔三模)四个相同的不透明的袋子都装有除颜色外无其它差别的小球.从这四个袋子中分别随机摸出一个球,摸到红球可能性最大的是( )
A.有1个红球和2个白球的袋子
B.有2个红球和3个白球的袋子
C.有3个红球和4个白球的袋子
D.有4个红球和5个白球的袋子
【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.
【解答】解:A.从有1个红球和2个白球的袋子里摸出一个球,是红球的可能性为;
B.从有2个红球和3个白球的袋子里摸出一个球,是红球的可能性为=;
C.从有3个红球和4个白球的袋子里摸出一个球,是红球的可能性为=;
D.从有4个红球和5个白球的袋子里摸出一个球,是红球的可能性为=;
∵<<<,
∴可能性最大的是有4个红球和5个白球的袋子,
故选:D.
2.(2021?山西模拟)袋子中装有20个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则下列说法正确的是( )
A.这个球一定是黑球
B.摸到黑球、白球的可能性相同
C.这个球可能是白球
D.事先能确定摸到什么颜色的球
【分析】根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.
【解答】解:∵袋子中装有20个黑球、1个白球,
∴从布袋中随机摸出一个球是黑球的概率为,摸出一个球是白球的概率为,
∴A、这个球一定是黑球,错误;
B、摸到黑球、白球的可能性相同,错误;
C、这个球可能是白球,正确;
D、事先能确定摸到什么颜色的球,错误;
故选:C.
3.(2021?郴州)下列说法正确的是( )
A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨
B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯
C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖
D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上
【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.
【解答】解:A.明天下雨的概率为80%,只是说明明天下雨的可能性大,与时间无关,故本选项不符合题意;
B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯,故本选项符合题意;
C.某彩票中奖概率是1%,买100张这种彩票中奖是随机事件,不一定会有1张中奖,故本选项不符合题意;
D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩不一定在90分以上,故本选项不符合题意.
故选:B.
4.(2021春?太原期末)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是( )
A.通过抛一枚均匀硬币确定篮球赛中谁先发球是公平的
B.大量重复抛一枚均匀硬币,出现正面朝上的频率稳定于
C.连续抛一枚均匀硬币10次可能都是正面朝上
D.连续抛一枚均匀硬币2次必有1次正面朝上
【分析】根据概率的意义,结合具体的问题情境综合进行判断即可.
【解答】解:抛一枚均匀硬币正面朝上的概率为,就是经过大量重复的实验,抛一枚均匀硬币正面朝上的频率越稳定在左右,因此,
A.通过抛一枚均匀硬币确定篮球赛中谁先发球是公平的,这是公平的,因此选项A不符合题意;
B.大量重复抛一枚均匀硬币,出现正面朝上的频率稳定于,这种说法是正确的,因此选项B不符合题意;
C.连续抛一枚均匀硬币10次可能都是正面朝上,是可能存在的,因此选项C不符合题意;
D.连续抛一枚均匀硬币2次必有1次正面朝上,这是不正确的,因此选项D符合题意;
故选:D.
5.(2021?梧州)一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )
A.
B.
C.
D.
【分析】根据随机事件概率大小的求法,找准两点:
①符合条件的情况数目;
②全部情况的总数.
二者的比值就是其发生的概率的大小.
【解答】解:根据题意可得:一个袋子中装有9个球,其中有5个黑球和4个白球,
随机从这个袋子中摸出一个白球的概率是.
故选:A.
6.(2021?海南)在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是( )
A.
B.
C.
D.
【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
【解答】解:∵不透明袋子中装有5个球,其中有2个红球、3个白球,
∴从袋子中随机取出1个球,则它是红球的概率是,
故选:C.
7.(2021?广西)如图,小明从A入口进入博物馆参观,参观后可从B,C,D三个出口走出,他恰好从C出口走出的概率是( )
A.
B.
C.
D.
【分析】直接由概率公式求解即可.
【解答】解:小明恰好在C出口出来的概率为,
故选:B.
8.(2020?盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:
身高x/cm
x<160
160≤x<170
170≤x<180
x≥180
人数
60
260
550
130
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是( )
A.0.32
B.0.55
C.0.68
D.0.87
【分析】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.
【解答】解:样本中身高不低于170cm的频率==0.68,
所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.
故选:C.
9.(2021春?靖边县期末)在一个不透明的盒子中装有若干个黑球和白球,这些球除颜色外其余均相同,将球搅匀后任意摸出一个球,记下颜色后放回,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,则摸到白球的概率约为( )
A.0.8
B.0.3
C.0.2
D.0.5
【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【解答】解:因为通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,
所以摸到白球的概率约为0.2,
故选:C.
10.(2021春?陈仓区期末)在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球试验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球的个数可能是( )
A.2个
B.4个
C.18个
D.16个
【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.
【解答】解:设袋中有黄球x个,由题意得=0.2,
解得x=16.
故选:D.
11.(2021春?烟台期末)如图,左边是数学节小明自己制作的七巧板,右边是用这幅七巧板拼出的小鸟图案,一只蚂蚁在右图上任意爬行,若它停右图上任意一点的可能性相同,求停在小鸟头部三角形板(即①)上的概率是( )
A.
B.
C.
D.
【分析】首先确定在图中1号板的面积在整个面积中占的比例,根据这个比例即可求出小鸟停在1号板上的概率.
【解答】解:∵①号板的面积占正方形面积的,
∴停在小鸟头部紫色三角形板(即①)上的概率是,
故选:C.
12.(2017秋?东营区校级期末)甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为7”算甲赢,掷出“和为8”算乙赢,这个游戏是否公平?( )
A.公平
B.对甲有利
C.对乙公平
D.不能判断
【分析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即两个骰子上的数字之和为7或8时的概率是否相等,求出概率比较,即可得出结论.
【解答】解:两骰子上的数字之和是7的有3+4=7;4+3=7,2+5=7;5+2=7,1+6=7;6+1=7共6种情况,和为8的有2+6=8;6+2=8,3+5=8;5+3=8;4+4=8共5种情况,甲赢的概率大,故选:B.
二.填空题
13.(2021春?建平县期末)转动如图的转盘(转盘中各个扇形的面积都相等),当它停止转动时,指针指向标有数字 2 的区域的可能性最小.
【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可.
【解答】解:指针落在标有1的区域内的可能性是;
指针落在标有2的区域内的可能性是=;
指针落在标有数字3的区域内的可能性是;
所以指针指向标有数字2的区域的可能性最小,
故答案为:2.
14.(2021春?济南期末)某人连续抛掷一枚质地均匀的硬币3次,结果都是正面朝上,则他第四次抛掷这枚硬币,正面朝上的概率为 .
【分析】利用概率的意义直接得出答案.
【解答】解:某人连续抛掷一枚质地均匀的硬币3次,结果都是正面朝上,则他第四次抛掷这枚硬币,正面朝上的概率为:.
故答案为:.
15.(2021?西宁)从﹣,﹣1,1,2,﹣5中任取一个数作为a,则抛物线y=ax2+bx+c的开口向上的概率是
.
【分析】由共有5种等可能结果,其中抛物线y=ax2+bx+c的开口向上的有2种结果,根据概率公式求解可得答案.
【解答】解:∵从﹣,﹣1,1,2,﹣5中任取一个数作为a,共有5种等可能结果,其中抛物线y=ax2+bx+c的开口向上的有2种结果,
∴抛物线y=ax2+bx+c的开口向上的概率是,
故答案为:.
16.(2021春?项城市期末)箱子内有m个除颜色外其它完全相同的球,若这m个球中白球有6个,每次将球搅拌均匀后,任意摸出一个再放回去,通过大量重复实验发现摸出白球的频率稳定在20%,则推算m大约是
30 .
【分析】根据白球的个数除以它占总数的比例即为球的总数m,求出即可.
【解答】解:m=6÷20%=30.
故答案为:30.
17.(2021?佛山校级三模)从,,0,﹣2,π,这五个数中随机抽取一个数,恰好是无理数的概率是
.
【分析】直接利用概率公式计算得出答案.
【解答】解:从,,0,﹣2,π这五个数中随机抽取一个数,抽到的无理数的有,π这2种可能,
∴抽到的无理数的概率是,
故答案为:.
18.(2014秋?唐河县期末)如图,“石头、剪刀、布”是民间广为流传的游戏.距报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,那么两人打平的概率P= .
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人打平的情况,再利用概率公式即可求得答案.
【解答】解:画树状图得:
∵共有9种等可能的结果,两人打平的有3种情况,
∴两人打平的概率P=.
故答案为:.
三.解答题
19.(2021春?郓城县期末)甲袋中有红球8个、白球5个和黑球12个;乙袋中有红球27个、白球35个和黑球16个.
(1)如果你想取出1个黑球,选哪个袋子成功的机会大?请说明理由;
(2)如果你想取出1个红球,选哪个袋子成功的机会大?请说明理由;
(3)“从乙袋中取出红球10个后,乙袋中的红球个数仍比甲袋中红球个数多,所以此时若想取出1个红球,选乙袋成功的机会大”.你认为此说法正确吗?为什么?
【分析】(1)利用概率公式,分别计算在甲袋中取出1个黑球的概率和在乙袋中取出1个黑球的概率,然后比较两概率的大小进行判断;
(2)利用概率公式,分别计算在甲袋中取出1个红球的概率和在乙袋中取出1个红球的概率,然后比较两概率的大小进行判断;
(3)先计算出从乙袋中取出红球10个后,从乙袋中取出1个红球的概率为,再利用>,于是可判断此时若想取出1个红球,选甲袋成功的机会大.
【解答】解:(1)选甲袋子成功的机会大.
理由如下:
在甲袋中取出1个黑球的概率==,在乙袋中取出1个黑球的概率==,
因为>,
所以选甲袋子成功的机会大;
(2)选乙袋子成功的机会大.
理由如下:
在甲袋中取出1个红球的概率==,在乙袋中取出1个红球的概率==,
因为>,
所以选乙袋子成功的机会大;
(3)这个说法不正确.
因为从乙袋中取出红球10个后,从乙袋中取出1个红球的概率==,
而>,
所以此时若想取出1个红球,选甲袋成功的机会大.
20.(2021春?中宁县期末)如图,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字.
两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,则猜数的人获胜,否则转动转盘的人获胜.猜数的规则从下面三种中选一种:
(1)猜“是奇数”或“是偶数”;
(2)猜“是3的倍数”或“不是3的倍数”;
(3)猜“是大于6的数”或“不是大于6的数”.
如果轮到你猜数,那么为了尽可能获胜,你将选择哪一种猜数方法?怎样猜?请说明理由!
【分析】分别求出各种情况下获胜的概率,比较得出答案.
【解答】解:(1)共有10种等可能出现的结果数,其中“是奇数”的有5种,“是偶数”的也有5种,因此“是奇数”“是偶数”的可能性都是50%,
(2)共有10种等可能出现的结果数,其中“是3的倍数”的有3种,“不是3的倍数”的7种,因此“是3的倍数”可能性是30%,“不是3的倍数”的可能性是70%,
(3)共有10种等可能出现的结果数,其中“是大于6的数”的有4种,“不是大于6的数”的有6种,因此“是大于6的数”可能性是40%,“不是大于6的数”的可能性是60%,
因此,猜数者选择“不是3的倍数”,这样获胜的可能性为70%,获胜的可能性最大.
21.(2018?百色)密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××
小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是 1或2 .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;
(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.
【分析】(1)根据每个月份为上旬、中旬、下旬,分别是:上旬:1日﹣10日
中旬:11日﹣20日
下旬:21日到月底,由此即可解决问题;
(2)利用列举法即可解决问题;
(3)小张同学是6月份出生,6月份只有30天,推出第一个转轮设置的数字是6,第三个转轮设置的数字可能是0,1,2,3;第二个转轮设置的数字可能是0,1,2,…9;由此即可解决问题;
【解答】解:(1)∵小黄同学是9月份中旬出生
∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2;
故答案为1或2;
(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;
能被3整除的有912,915,918,;
密码数能被3整除的概率.
(3)小张同学是6月份出生,6月份只有30天,
∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能是0,1,2,…9(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0;
∴一共有9+10+10+1=30,
∴小张生日设置的密码的所有可能个数为30种.(也可以直接根据6月份只有30天,有30个不同的数字,得出设置的密码的所有可能个数为30种)
22.(2018?新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.
请根据统计图解答下列问题:
(1)本次调查中,杨老师一共调查了 20 名学生,其中C类女生有 2 名,D类男生有 1 名;
(2)补全上面的条形统计图和扇形统计图;
(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.
【分析】(1)由A类别人数及其所占百分比可得总人数,用总人数乘以C类别百分比,再减去其中男生人数可得女生人数,同理求得D类别男生人数;
(2)根据(1)中所求结果可补全图形;
(3)根据概率公式计算可得.
【解答】解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人,
C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,
故答案为:20、2、1;
(2)补全图形如下:
(3)因为A类的3人中,女生有2人,
所以所选的同学恰好是一位女同学的概率为.
23.(2019?雅安)某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.
根据统计图:
(1)求该校被调查的学生总数及评价为“满意”的人数;
(2)补全折线统计图;
(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?
【分析】(1)首先求得总人数,然后根据百分比求得人数即可;
(2)根据(1)补全折线统计图即可;
(3)利用概率公式求解即可.
【解答】解:(1)由折线统计图知“非常满意”9人,由扇形统计图知“非常满意”占15%,所以被调查学生总数为9÷15%=60(人),所以“满意”的人数为60﹣(9+21+3)=27(人);
(2)如图:
(3)所求概率为=.
24.(2010?常州)如图所示,小吴和小黄在玩转盘游戏时,准备了两个可以自由转动的转盘甲、乙,内阁转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜否则小黄胜.(如果指针恰好在分割线上,那么重转一次,直到指针指向某一扇形区域为止)
(1)这个游戏规则对双方公平吗?说说你的理由;
(2)请你设计一个对双方都公平的游戏规则.
【分析】(1)列举出所有情况,看指针所指扇形区域内的数字之和为4,5或6的情况占所有情况的多少即可求得小吴赢的概率,进而求得小黄赢的概率,比较即可;
(2)应保证双方赢的概率相同.
【解答】解:(1)数字之和一共有20种情况,和为4,5,或6的共11种情况,
∵P(小吴胜)=>P(小黄胜)=,
∴这个游戏不公平;
转盘甲转盘乙
1
2
3
4
5
1
(1,1)和为2
(2,1)和为3
(3,1)和为4
(4,1)和为5
(5,1)和为6
2
(1,2)和为3
(2,2)和为4
(3,2)和为5
(4,2)和为6
(5,2)和为7
3
(1,3)和为4
(2,3)和为5
(3,3)和为6
(4,3)和为7
(5,3)和为8
4
(1,4)和为5
(2,4)和为6
(3,4)和为7
(4,4)和为8
(5,4)和为9
(2)新的游戏规则:和为奇数小吴胜,和为偶数小黄胜.
理由:数字和一共有20种情况,和为偶数、奇数的各10种情况,
∴P(小吴胜)=P(小黄胜)=.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)