2021年浙教版数学九年级上册
2.2《简单事件的概率》同步练习卷
一、选择题
1.学校团委在“五四”青年节举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动概率是( ).
A. B. C. D.
2.一个盒子内装有大小、形状相同的4个球,其中有1个红球、1个绿球、2个白球.小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ).
A. B. C. D.
3.如图所示,从图中的四张印有品牌标志图案的卡片中任取一张,取出图案是轴对称图形的卡片的概率是( ).
A. B. C. D.1
4.一个不透明口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸出一个球不是白球的概率是( ).
A. B. C. D.
5.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A. B. C. D.
6.从分别标有数-3,-2,-1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( ).
A. B. C. D.
7.如图所示,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( ).
A. B. C. D.
8.一枚质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生的可能性最大的事件是( ).
A.点数都是偶数
B.点数的和为奇数
C.点数的和小于13
D.点数的和小于2
9.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为( )
A. B. C. D.
10.甲、乙、丙三个箱子原本各装有相同数量的球,已知甲箱内的红球占甲箱内球数的14,乙箱内没有红球,丙箱内的红球占丙箱内球数的.现将乙、丙两箱内的球全倒入甲箱后,从甲箱内取出一球,若甲箱内每球被取出的机会相等,则取出的球是红球的概率是( ).
A B. C. D.
二、填空题
11.一个不透明的口袋中有6个完全相同的小球,现把它们分别标号为1,2,3,4,5,6,并从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是 .
12.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为 .
13.一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是 .
14.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是_____.
15.经过人民路十字路口红绿灯处的两辆汽车,可能直行,也可能左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是________.
16.如图所示,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率是 .
三、解答题
17.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.已知红球个数比黑球个数的2倍多40个,从袋中任取一个球是白球的概率是.求:
(1)袋中红球的个数.
(2)从袋中任取一个球是黑球的概率.
18.有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,摸到的卡片是2的倍数的概率是多少?3的倍数呢?5的倍数呢?
19.密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××(注:中旬为某月中的11日﹣20日),小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是 .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率.
20.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋、投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.
(1)直接写出甲投放的垃圾恰好是A类的概率.
(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
21.某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择.若随机选择其中一个,则小明回答正确的概率是 .
(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择.若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
参考答案
1.答案为:A.
2.答案为:C.
3.答案为:C.
4.答案为:B.
5.答案为:B.
6.答案为:D.
7.答案为:B.
8.答案为:C.
9.答案为:C.
10.答案为:C.
11.答案为:.
12.答案为:.
13.答案为:.
14.答案为:.
15.答案为:.
16.答案为:.
17.解:(1)口袋中白球的个数为290×=10(个),
设口袋中黑球有x个,则红球有(2x+40)个.
根据题意得x+(2x+40)+10=290,解得x=80.
当x=80时,2x+40=200(个).
∴袋中红球有200个.
(2)80÷290=.
∴从袋中任取一个球是黑球的概率是.
18.解:P(摸到的卡片是2的倍数)==;
P(摸到的卡片是3的倍数)=;
P(摸到的卡片是5的倍数)==.
19.解:(1)∵小黄同学是9月份中旬出生,
∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2;
故答案为1或2;
(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;
能被3整除的有912,915,918,;
密码数能被3整除的概率0.3.
20.解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,
∴甲投放的垃圾恰好是A类的概率为.
(2)画树状图如下:
由图可知,共有18种等可能的结果,
其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,
∴P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)= =.
21.解:(1)
(2)画树状图如下:
由树状图可知共有4种等可能的结果,其中正确的有1种,
∴小丽回答正确的概率为.