2.1《直线和圆的位置关系》同步练习卷 2020-2021学年浙教版数学九年级下册(word版含答案)

文档属性

名称 2.1《直线和圆的位置关系》同步练习卷 2020-2021学年浙教版数学九年级下册(word版含答案)
格式 doc
文件大小 210.8KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2021-11-03 18:23:23

图片预览

文档简介

2021年浙教版数学九年级下册
2.1《直线和圆的位置关系》同步练习卷
一、选择题
1.圆的直径为13cm,如果圆心与直线的距离是d,则(  )
A.当d=8cm时,直线与圆相交
B.当d=4.5cm时,直线与圆相离
C.当d=6.5cm时,直线与圆相切
D.当d=13cm时,直线与圆相切
2.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是(  )
A.相离 B.相切 C.相交 D.相离、相切、相交都有可能
3.已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是(  )
A.0<x≤1 B.1≤x< C.0<x≤ D.x>
4.已知圆的直径是13cm,如果圆心到某直线的距离是6.5cm,则此直线与这个圆的位置关系是(  )
A.相交 B.相切 C.相离 D.无法确定
5.如图,在Rt△ABC中,∠C=90°,CB=3cm,AB=4cm,若以点C为圆心,以2cm为半径作⊙C,则AB与⊙C的位置关系是(  )
A.相离 B.相切 C.相交 D.相切或相交
6.如图,两个圆的圆心都是点O,AB是大圆的直径,大圆的弦BC所在直线与小圆相切于点D.则下列结论不一定成立的是(  )
A.BD=CD B.AC⊥BC C.AB=2AC D.AC=2OD
7.如图,已知点A,B在半径为1的⊙O上,∠AOB=60°,延长OB至点C,过点C作直线OA的垂线,记为l,则下列说法正确的是(  )
A.当BC=0.5时,l与⊙O相离
B.当BC=2时,l与⊙O相切
C.当BC=1时,l与⊙O相交
D.当BC≠1时,l与⊙O不相切
8.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是(  )
A.相切 B.相交 C.相离 D.无法确定
9.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为(  )
A.2 B. C. D.
10.以坐标原点O为圆心,作半径为2的圆,若直线y=-x+b与⊙O相交,则b的取值范围是( )
A.0≤b<2 B.-2≤b≤2 C.-2二、填空题
11.已知在直角坐标系内,半径为2的圆的圆心坐标为(3,﹣4),当该圆向上平移m(m>0)个单位长度时,若要此圆与x轴没有交点,则m的取值范围是   .
12.已知圆O的半径为5,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为   .
13.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是   cm.
14.如图,⊙O是△ABC的内切圆,⊙O切BC于点D,BD=3,CD=2,△ABC的周长为14,则AB=  .
15.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是   .
16.如图,点A、B在直线l上,AB=10cm,⊙B的半径为1cm,点C在直线l上,过点C作直线CD且∠DCB=30°,直线CD从A点出发以每秒4cm的速度自左向右平行运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0),当直线CD出发______________秒直线CD恰好与⊙B 相切.
三、解答题
17.如图,已知∠APB=30°,OP=3cm,⊙O的半径为1cm,若圆心O沿着BP的方向在直线BP上移动.
(1)当圆心O移动的距离为1cm时,则⊙O与直线PA的位置关系是什么?
(2)若圆心O的移动距离是d,当⊙O与直线PA相交时,则d的取值范围是什么?
18.如图,在Rt△ABC中,∠C=90°,∠B=60°,若AO=x cm,⊙O的半径为1 cm,当x在什么范围内取值时,直线AC与⊙O相离、相切、相交?
19.如图,O是Rt△ABC的直角边BC上的点,以O为圆心,OC长为半径的圆的⊙O过斜边上点D,交BC于点F,DF∥AO.
(1)判断直线AD与⊙O的位置关系,并说明理由;
(2)若BD=4,BC=8,求DF的长.
20.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.
(1)判断直线DP与⊙O的位置关系,并说明理由;
(2)若DC=4,⊙O的半径为5,求PB的长.
21.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.
(1)判断CM与⊙O的位置关系,并说明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.
参考答案
1.答案为:C.
2.答案为:A.
3.答案为:C.
4.答案为:B.
5.答案为:C.
6.答案为:C.
7.答案为:D.
8.答案为:B.
9.答案为:B.
10.答案为:D
11.答案为:0<m<2或m>6.
12.答案为:5.
13.答案为:6 cm.
14.答案为;5.
15.答案为:.
16.答案为:或6.
17.解:(1)如图,当点O向左移动1cm时,PO′=PO﹣O′O=3﹣1=2cm,
作O′C⊥PA于C,
∵∠P=30度,
∴O′C=PO′=1cm,
∵圆的半径为1cm,
∴⊙O与直线PA的位置关系是相切;
(2)如图:当点O由O′向右继续移动时,PA与圆相交,
当移动到C″时,相切,
此时C″P=PO′=2,
∵OP=3,
∴OO'=1,OC''=OP+C''P=3+2=5
∴点O移动的距离d的范围满足1cm<d<5cm时相交,
故答案为::1cm<d<5cm.
18.解:作OD⊥AC于点D.∵∠C=90°,∠B=60°,∴∠A=30°.
∵AO=x cm,∴OD=x cm.
(1)若⊙O与直线AC相离,则有OD>r,即x>1,解得x>2;
(2)若⊙O与直线AC相切,则有OD=r,即x=1,解得x=2;
(3)若⊙O与直线AC相交,则有OD综上可知:当x>2时,直线AC与⊙O相离;当x=2时,直线AC与⊙O相切;
当0<x<2时,直线AC与⊙O相交.
19.解:(1)直线AD与⊙O的位置关系是相切,
理由是:连接OD,
∵OD=OF,
∴∠ODF=∠OFD,
∵DF∥AO,
∴∠ODF=∠AOD,∠OFD=∠AOC,
∴∠AOD=∠AOC,
在△ACO和△ADO中
∴△ACO≌△ADO,
∴∠ADO=∠ACO,
∵∠ACO=90°,
∴∠ADO=90°,
∵OD为半径,
∴直线AD与⊙O的位置关系是相切;
(2)设⊙O的半径是R,
∵BC=8,
∴BO=8﹣R,
在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,
即R2+42=(8﹣R)2,
解得:R=3,
即OD=3,BO=8﹣3=5,
过D作DM⊥OB于M,
则S△ODB=×OD×BD=,
3×4=5×DM,解得:DM=2.4,
在Rt△DMO中,
由勾股定理得:OM===1.8,
∴MF=3﹣1.8=1.2,
在Rt△DMF中,
由勾股定理得:DF===1.2.
20.解:(1)直线DP与⊙O相切.
理由如下:连接OC,如图,
∵AC是∠EAB的平分线,
∴∠EAC=∠OAC
∵OA=OC,
∴∠ACO=∠OAC,
∴∠ACO=∠DAC,
∴OC∥AD,
∵CD⊥AE,
∴OC⊥CD,
∴DP是⊙O的切线;
(2)作CH⊥AB于H,如图,
∵AC是∠EAB的平分线,CD⊥AD,CH⊥AB,
∴CH=CD=4,
∴OH==3,
∵OC⊥CP,
∴∠OCP=∠CHO=90°,
而∠COP=∠POC,
∴△OCH∽△OPC,
∴OC:OP=OH:OC,
∴OP==,
∴PB=OP﹣OB=﹣5=.
21.解:(1)CM与⊙O相切.理由如下:
连接OC,如图,
∵GD⊥AO于点D,
∴∠G+∠GBD=90°,
∵AB为直径,
∴∠ACB=90°,
∵M点为GE的中点,
∴MC=MG=ME,
∴∠G=∠1,
∵OB=OC,
∴∠B=∠2,
∴∠1+∠2=90°,
∴∠OCM=90°,
∴OC⊥CM,
∴CM为⊙O的切线;
(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,
∴∠1=∠5,
而∠1=∠G,∠5=∠A,
∴∠G=∠A,
∵∠4=2∠A,
∴∠4=2∠G,
而∠EMC=∠G+∠1=2∠G,
∴∠EMC=∠4,
而∠FEC=∠CEM,
∴△EFC∽△ECM,
∴==,即==,
∴CE=4,EF=,
∴MF=ME﹣EF=6﹣=.