中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
2021-2022学年浙江九年级数学上册第3章《圆的基本性质》能力提升卷
(考试时间:90分钟 试卷满分:100分)
一,选择题(本题有10小题,每小题3分,共30分,)
温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!
1.(本题3分)一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是( )
A.2.5 cm或6.5 cm
B.2.5 cm
C.6.5 cm
D.5 cm或13cm
【答案】A
【分析】
点P应分为位于圆的内部位于外部两种情况讨论.当点P在圆内时,点到圆的最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解.
【详解】
解:当点P在圆内时,最近点的距离为4cm,最远点的距离为9cm,则直径是13cm,因而半径是6.5cm;
当点P在圆外时,最近点的距离为4cm,最远点的距离为9cm,则直径是5cm,因而半径是2.5cm.
故选A.
【点睛】
本题考查了点与圆的位置关系,注意分两种情况进行讨论是解决本题的关键.
2.(本题3分)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有
A.4个 B.3个 C.2个 D.1个
【答案】B
【详解】
分析:根据圆中的有关概念、定理进行分析判断.
解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;
②当三点共线的时候,不能作圆,故错误;
③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;
④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.
故选B.
3.(本题3分)如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A.45° B.50° C.55° D.60°
【答案】B
【分析】
先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.
【详解】
∵四边形ABCD内接于⊙O,∠ABC=105°,
∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.
∵,∠BAC=25°,
∴∠DCE=∠BAC=25°,
∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.
【点睛】
本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.
4.(本题3分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A. B. C.2 D.2
【答案】D
【详解】
【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
【详解】过A作AD⊥BC于D,
∵△ABC是等边三角形,
∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
∵AD⊥BC,
∴BD=CD=1,AD=BD=,
∴△ABC的面积为BC AD==,
S扇形BAC==,
∴莱洛三角形的面积S=3×﹣2×=2π﹣2,
故选D.
【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
5.(本题3分)如图,已知正五边形内接于,连结,则的度数是( )
A. B. C. D.
【答案】C
【分析】
根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.
【详解】
∵五边形为正五边形
∴
∵
∴
∴
故选C.
【点睛】
本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.
6.(本题3分)如图,动点在边长为2的正方形内,且,是边上的一个动点,是边的中点,则线段的最小值为( )
A. B. C. D.
【答案】A
【分析】
作点E关于DC的对称点E,设AB的中点为点O,连接OE,交DC于点P,连接PE,由轴对称的性质及90°的圆周角所对的弦是直径,可知线段PE+PM的最小值为OE的值减去以AB为直径的圆的半径OM,根据正方形的性质及勾股定理计算即可.
【详解】
解答:解:作点E关于DC的对称点E,设AB的中点为点O,连接OE,交DC于点P,连接PE,如图:
∵动点M在边长为2的正方形ABCD内,且AM⊥BM,
∴点M在以AB为直径的圆上,OM=AB=1,
∵正方形ABCD的边长为2,
∴AD=AB=2,∠DAB=90°,
∵E是AD的中点,
∴DE=AD=×2=1,
∵点E与点E关于DC对称,
∴DE=DE=1,PE=PE,
∴AE=AD+DE=2+1=3,
在Rt△AOE中,OE===,
∴线段PE+PM的最小值为:
PE+PM
=PE+PM
=ME
=OE OM
= 1.
故选:A.
【点睛】
本题考查了轴对称 最短路线问题、圆周角定理的推论、正方形的性质及勾股定理等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.
7.(本题3分)如图,MN是的直径,点A是半圆上一个三等分点,点B是的中点,点是点B关于MN的对称点,的半径为1,则的长等于( )
A.1 B.
C. D.
【答案】B
【分析】
如图,连接、,由题意可得,,由点B是的中点可得=,即,所以,进而得出, 由勾股定理即可求出的长度.
【详解】
如图,连接、,
由题意可得,,
点B是的中点,
=,
,
,
,
=.
故选:B.
【点睛】
本题主要考查圆弧与圆心角之间的关系以及勾股定理的应用,熟记圆的性质并灵活应用是解题关键.
8.(本题3分)已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是( )
A.①②④ B.③④ C.①②③ D.①②③④
【答案】A
【分析】
连接BD、OC、AG、AC,过O作OQ⊥CF于Q,OZ⊥BG于Z,求出∠ABC=∠ABD,从而有弧AC=弧AD,由垂径定理的推论即可判断①的正误;
由CD⊥PB可得到∠P+∠PCD=90°,结合∠P=∠DCO、等边对等角的知识等量代换可得到∠PCO=90°,据此可判断②的正误;假设OD∥GF成立,则可得到∠ABC=30°,判断由已知条件能否得到∠ABC的度数即可判断③的正误;求出CF=AG,根据垂径定理和三角形中位线的知识可得到CQ=OZ,通过证明△OCQ≌△BOZ可得到OQ=BZ,结合垂径定理即可判断④.
【详解】
连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,
∵OD=OB,
∴∠ABD=∠ODB,
∵∠AOD=∠OBD+∠ODB=2∠OBD,
∵∠AOD=2∠ABC,
∴∠ABC=∠ABD,
∴弧AC=弧AD,
∵AB是直径,
∴CD⊥AB,
∴①正确;
∵CD⊥AB,
∴∠P+∠PCD=90°,
∵OD=OC,
∴∠OCD=∠ODC=∠P,
∴∠PCD+∠OCD=90°,
∴∠PCO=90°,
∴PC是切线,∴②正确;
假设OD∥GF,则∠AOD=∠FEB=2∠ABC,
∴3∠ABC=90°,
∴∠ABC=30°,
已知没有给出∠B=30°,∴③错误;
∵AB是直径,
∴∠ACB=90°,
∵EF⊥BC,
∴AC∥EF,
∴弧CF=弧AG,
∴AG=CF,
∵OQ⊥CF,OZ⊥BG,
∴CQ=AG,OZ=AG,BZ=BG,
∴OZ=CQ,
∵OC=OB,∠OQC=∠OZB=90°,
∴△OCQ≌△BOZ,
∴OQ=BZ=BG,
∴④正确.
故选A.
【点睛】
本题是圆的综合题,考查了垂径定理及其推论,切线的判定,等腰三角形的性质,平行线的性质,全等三角形的判定与性质.解答本题的关键是熟练掌握圆的有关知识点.
9.(本题3分)如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是( )
A. B. C. D.
【答案】C
【分析】
根据抛物线解析式可求得点A(-4,0),B(4,0),故O点为AB的中点,又Q是AP上的中点可知OQ=BP,故OQ最大即为BP最大,即连接BC并延长BC交圆于点P时BP最大,进而即可求得OQ的最大值.
【详解】
∵抛物线与轴交于、两点
∴A(-4,0),B(4,0),即OA=4.
在直角三角形COB中
BC=
∵Q是AP上的中点,O是AB的中点
∴OQ为△ABP中位线,即OQ=BP
又∵P在圆C上,且半径为,
∴当B、C、P共线时BP最大,即OQ最大
此时BP=BC+CP=
OQ=BP=.
【点睛】
本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ最大转化为求BP最长时的情况.
10.(本题3分)如图,在中,,,,点为的中点,以点为圆心作圆心角为的扇形,点恰在弧上,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
【分析】
连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.
【详解】
连接CD,作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴DC=AB=1,四边形DMCN是正方形,DM=.
则扇形FDE的面积是:.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
则在△DMG和△DNH中,
,
∴△DMG≌△DNH(AAS),
∴S四边形DGCH=S四边形DMCN=.
则阴影部分的面积是:-.
【点睛】
本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.
二,填空题(本大题共7小题,每小题3分,共21分)
温馨提示:填空题必须是最简洁最正确的答案!
11.(本题3分)如图,是圆的弦,,垂足为点,将劣弧沿弦折叠交于的中点,若,则圆的半径为_____.
【答案】.
【分析】
连接OA,设半径为x,用x表示OC,根据勾股定理建立x的方程,便可求得结果.
【详解】
解:解:连接OA,设半径为x,
将劣弧沿弦AB折叠交于OC的中点D,
,,
,
,
,
解得,.
故答案为.
【点睛】
本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是根据勾股定理列出半径的方程.
12.(本题3分)如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若的度数为35°,则的度数是_____.
【答案】105°.
【分析】
连接OD、OE,根据圆心角、弧、弦的关系定理求出∠AOD=35°,根据等腰三角形的性质和三角形内角和定理计算即可.
【详解】
解:连接OD、OE,
∵的度数为35°,
∴∠AOD=35°,
∵CD=CO,
∴∠ODC=∠AOD=35°,
∵OD=OE,
∴∠ODC=∠E=35°,
∴∠DOE=180°-∠ODC-∠E=180°-35°-35°=110°,
∴∠AOE=∠DOE-∠AOD=110°-35°=75°,
∴∠BOE=180°-∠AOE=180°-75°=105°,
∴的度数是105°.
故答案为105°.
【点睛】
本题考查了圆心角、弧、弦的关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
13.(本题3分)如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____
【答案】
【分析】
连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.
【详解】
解:连接OA,OC,
∵∠COA=2∠CBA=90°,
∴在Rt△AOC中,AC=,
∵CD⊥AB,
∴在Rt△ACD中,CD=AC·sin∠CAD=,
故答案为.
【点睛】
本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.
14.(本题3分)如图,⊙O的内接五边形ABCDE的对角线AC与BD相交于点G,若∠E=92°,∠BAC=41°,则∠DGC=_____°.
【答案】51°
【分析】
根据圆内接四边形对角互补,求出∠DCA,又∠DCA=∠ABG,在△AGB中求出∠AGB,∠DGC=∠AGB.
【详解】
根据圆内接四边形对角互补,∠DCA=180°-∠E=88°,又∠ABG=∠DCA =88°,在△AGB中∠AGB=180°-∠ABG-∠BAC=51°,∠DGC=∠AGB=51°.
【点睛】
本题的解题关键是根据圆内接四边形对角互补求角度.
15.(本题3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为_____.
【答案】
【详解】
【分析】先根据勾股定理得到AB=2,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.
【详解】∵∠ACB=90°,AC=BC=2,
∴AB=2,
∴S扇形ABD=,
又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,
∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=,
故答案为.
【点睛】本题考查了旋转的性质、扇形面积的计算,得到S阴影部分 =S扇形ABD是解题的关键.
16.(本题3分)如图所示,将一个半径,圆心角的扇形纸板放置在水平面的一条射线上.在没有滑动的情况下,将扇形沿射线翻滚至再次回到上时,则半径的中点P运动的路线长为_____________.
【答案】无解
【详解】
中考错题无解
17.(本题3分)在△ABC中,AB=AC=2,BC=4,P是AB上一点,连接PC,以PC为直径作⊙M交BC于D,连接PD,作DE⊥AC于点E,交PC于点G,已知PD=PG,则BD=_____.
【答案】
【解析】
【分析】
作AH⊥BC于H.首先证明△PDB∽△DEC∽△CEG∽△AHB,设BD=a,则有PD=PG=2a,CD=4-a,EC=,CG=,推出PC=PG+CG=,在Rt△PCD中,根据PD2+CD2=PC2,构建方程即可解决问题.
【详解】
如图,作AH⊥BC于H,
∵AB=AC=2,AH⊥BC,
∴∠B=∠ACD,BH=CH=2,AH==4,
∵PC是直径,
∴∠PDC=90°,
∵DE⊥AC,
∴∠CDP=∠CED=90°,
∵PD=PG,
∴∠PDG=∠PGD=∠CGE,
∵∠PDG+∠CDE=90°,∠CDE+∠ECD=90°,
∴∠PDG=∠ECD=∠B=∠EGC,
∵∠PDB=∠DEC=∠AHB=90°,
∴△PDB∽△DEC∽△CEG∽△AHB,设BD=a,
则有PD=PG=2a,CD=4-a,EC=,CG=,
∴PC=PG+CG=,
在Rt△PCD中,∵PD2+CD2=PC2,
∴4a2+(4-a)2=()2,
解得a=或4(舍弃),
∴BD=.
故答案为:.
【点睛】
本题考查圆周角定理,等腰三角形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程方程解决问题,属于中考常考题型.
三,解答题(本大题共6小题,共49分.)
温馨提示:解答题应将必要的解答过程呈现出来!
18.(本题7分)已知是的直径,弦与相交,.
(Ⅰ)如图①,若为的中点,求和的大小;
(Ⅱ)如图②,过点作的切线,与的延长线交于点,若,求的大小.
【答案】(1)52°,45°;(2)26°
【详解】
分析:(Ⅰ)运用直径所对的圆周角是直角以及圆周角的度数等于它所对弧的度数求解即可;
(Ⅱ)运用圆周角定理求解即可.
详解:(Ⅰ)∵是的直径,∴.
∴.
又∴,∴.
由为的中点,得.
∴.
∴.
(Ⅱ)如图,连接.
∵切于点,
∴,即.
由,又,
∴是的外角,
∴.
∴.
又,得.
∴.
点睛:本题考查了圆周角定理,切线的性质以及等腰三角形的性质,正确的作出辅助线是解题的关键.
19.(本题7分)如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E
(1)求线段DE的长;
(2)点O到AB的距离为3,求圆O的半径.
【答案】(1)DE=4;(2)圆O的半径为5.
【分析】
(1)根据垂径定理得出AD=DC,CE=EB,再根据三角形的中位线定理可得DE=AB,代入相应数值求出即可;
(2)过点O作OH⊥AB,垂足为点H,则OH=3,连接OA,根据垂径定理可得AH=4,在Rt△AHO中,利用勾股定理求出AO的长即可得答案.
【详解】
(1)∵OD经过圆心O,OD⊥AC,
∴AD=DC,
同理:CE=EB,
∴DE是△ABC的中位线,
∴DE=AB,
∵AB=8,
∴DE=4;
(2)过点O作OH⊥AB,垂足为点H,则OH=3,连接OA,
∵OH经过圆心O,
∴AH=BH=AB,
∵AB=8,
∴AH=4,
在Rt△AHO中,AH2+OH2=AO2,
∴AO=5,即圆O的半径为5.
【点睛】
本题主要考查了垂径定理,涉及了三角形中位线定理、勾股定理等内容,熟练掌握垂径定理是解本题的关键.
20.(本题8分)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.
(1)求证:∠CAD=∠ABC;
(2)若AD=6,求的长.
【答案】(1)证明见解析;(2)π.
【分析】
(1)利用角平分线的性质结合圆周角定理即可证明;
(2)可证得=,则的长为圆周长的.
【详解】
(1)证明:∵BC平分∠ABD,
∴∠DBC=∠ABC,
∵∠CAD=∠DBC,
∴∠CAD=∠ABC;
(2)解:∵∠CAD=∠ABC,
∴=,
∵AD是⊙O的直径,且AD=6,
∴的长=×π×6=π.
【点睛】
本题考查了角平分线的性质以及圆周角定理,证得=是解(2)题的关键.
21.(本题8分)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;
(2)若AB=24,CD=8,求⊙O的半径长.
【答案】(1);(2)13
【分析】
(1)连接,结合OD⊥AB,根据垂径定理,推导得∠AOD;再根据圆心角、圆周角的性质,即可得到答案;
(2)结合题意,根据垂径定理性质,计算得AC;再结合OD⊥AB,通过勾股定理即可计算得⊙O的半径.
【详解】
(1)连接
∵
∴
∴
∵
∴
(2)∵
∴
设,则
在中,
∴
∴的半径长为13.
【点睛】
本题考查了圆的知识;解题的关键是熟练掌握垂径定理、圆心角、圆周角、勾股定理的性质,从而完成求解.
22.(本题9分)如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣3,O),C(,O).
(1)求⊙M的半径;
(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.
(3)在(2)的条件下求AF的长.
【答案】(1)4;(2)见解析;(3)4.
【分析】
(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;
(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;
(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.
【详解】
(1)如图(一),过M作MT⊥BC于T连BM,
∵BC是⊙O的一条弦,MT是垂直于BC的直径,
∴BT=TC=BC=2,
∴BM==4;
(2)如图(二),连接AE,则∠AEC=∠ABC,
∵CE⊥AB,
∴∠HBC+∠BCH=90°
在△COF中,
∵∠OFC+∠OCF=90°,
∴∠HBC=∠OFC=∠AFH,
在△AEH和△AFH中,
∵,
∴△AEH≌△AFH(AAS),
∴EH=FH;
(3)由(1)易知,∠BMT=∠BAC=60°,
作直径BG,连CG,则∠BGC=∠BAC=60°,
∵⊙O的半径为4,
∴CG=4,
连AG,
∵∠BCG=90°,
∴CG⊥x轴,
∴CG∥AF,
∵∠BAG=90°,
∴AG⊥AB,
∵CE⊥AB,
∴AG∥CE,
∴四边形AFCG为平行四边形,
∴AF=CG=4.
【点睛】
本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.
23.(本题10分)已知,四点在⊙上,延长交于点,且.
(1)若
①求证:;
②当时,求的度数;
(2)若⊙的半径为,求的最大值.
【答案】(1)①见详解;②;(2)
【分析】
(1)①根据等腰三角形性质证,在用等弧所对圆周角相等证明,即可得证;②由①的结论可以求得,,利用三角形外角定理可证,根据顶角为的等腰三角形可证,角度相减即可求得;(2)过A点作BC的垂线构建直角三角形,根据勾股定理用PE和AP 去表示,根据已知数据整理得,在RT△APE中根据勾股定理即可得,圆上两点间的线段直径最大,即可求解.
【详解】
(1)①证明:∵,
∴,
∵四点在⊙上,
为所对圆周角,
∴,
∴,
即.
②由①可知
∴
∵,
∴,
∴
(2)
过A点作BC的垂线,垂足为P
∵
则,
∴,
即,
在RT△APE中
,
即当AE最大时,最大,
即当AE过圆心O时为直径最大,
∵⊙的半径为
∴.
【点睛】
本题主要考查了等腰三角形的性质、三角形外角性质、勾股定理、圆周角的定理等.当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来.利用勾股定理首先要找到或构建直角三角形是关键.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
2021-2022学年浙江九年级数学上册第3章《圆的基本性质》能力提升卷
(考试时间:90分钟 试卷满分:100分)
一,选择题(本题有10小题,每小题3分,共30分,)
温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!
1.(本题3分)一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是( )
A.2.5 cm或6.5 cm
B.2.5 cm
C.6.5 cm
D.5 cm或13cm
2.(本题3分)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有
A.4个 B.3个 C.2个 D.1个
3.(本题3分)如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A.45° B.50° C.55° D.60°
4.(本题3分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A. B. C.2 D.2
5.(本题3分)如图,已知正五边形内接于,连结,则的度数是( )
A. B. C. D.
6.(本题3分)如图,动点在边长为2的正方形内,且,是边上的一个动点,是边的中点,则线段的最小值为( )
A. B. C. D.
7.(本题3分)如图,MN是的直径,点A是半圆上一个三等分点,点B是的中点,点是点B关于MN的对称点,的半径为1,则的长等于( )
A.1 B.
C. D.
8.(本题3分)已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是( )
A.①②④ B.③④ C.①②③ D.①②③④
9.(本题3分)如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是( )
A. B. C. D.
10.(本题3分)如图,在中,,,,点为的中点,以点为圆心作圆心角为的扇形,点恰在弧上,则图中阴影部分的面积为( )
A. B. C. D.
二,填空题(本大题共7小题,每小题3分,共21分)
温馨提示:填空题必须是最简洁最正确的答案!
11.(本题3分)如图,是圆的弦,,垂足为点,将劣弧沿弦折叠交于的中点,若,则圆的半径为_____.
12.(本题3分)如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若的度数为35°,则的度数是_____.
13.(本题3分)如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____
14.(本题3分)如图,⊙O的内接五边形ABCDE的对角线AC与BD相交于点G,若∠E=92°,∠BAC=41°,则∠DGC=_____°.
15.(本题3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为_____.
16.(本题3分)如图所示,将一个半径,圆心角的扇形纸板放置在水平面的一条射线上.在没有滑动的情况下,将扇形沿射线翻滚至再次回到上时,则半径的中点P运动的路线长为_____________.
17.(本题3分)在△ABC中,AB=AC=2,BC=4,P是AB上一点,连接PC,以PC为直径作⊙M交BC于D,连接PD,作DE⊥AC于点E,交PC于点G,已知PD=PG,则BD=_____.
三,解答题(本大题共6小题,共49分.)
温馨提示:解答题应将必要的解答过程呈现出来!
18.(本题7分)已知是的直径,弦与相交,.
(Ⅰ)如图①,若为的中点,求和的大小;
(Ⅱ)如图②,过点作的切线,与的延长线交于点,若,求的大小.
19.(本题7分)如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E
(1)求线段DE的长;
(2)点O到AB的距离为3,求圆O的半径.
20.(本题8分)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.
(1)求证:∠CAD=∠ABC;
(2)若AD=6,求的长.
21.(本题8分)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;
(2)若AB=24,CD=8,求⊙O的半径长.
22.(本题9分)如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣3,O),C(,O).
(1)求⊙M的半径;
(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.
(3)在(2)的条件下求AF的长.
23.(本题10分)已知,四点在⊙上,延长交于点,且.
(1)若
①求证:;
②当时,求的度数;
(2)若⊙的半径为,求的最大值.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)