浙教版八年级数学上册第5章一次函数 期末复习训练题(word版含解析)

文档属性

名称 浙教版八年级数学上册第5章一次函数 期末复习训练题(word版含解析)
格式 doc
文件大小 313.2KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2021-12-27 12:13:51

图片预览

文档简介

2021-2022学年浙教版八年级数学上册《第5章一次函数》期末综合复习训练(附答案)
1.下列各曲线中表示y是x的函数的是(  )
A.B. C.D.
2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为s(千米),速度为v(千米/分),时间为t(分).下列函数图象能表达这一过程的是(  )
A. B.
C. D.
3.关于直线l:y=kx+k(k≠0),下列说法不正确的是(  )
A.点(0,k)在l上
B.l经过定点(﹣1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
4.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是(  )
A.﹣1≤b≤1 B.﹣≤b≤1 C.﹣≤b≤ D.﹣1≤b≤
5.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为(  )
A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)
6.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是(  )
A.x>﹣2 B.x>0 C.x>1 D.x<1
7.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是(  )
A.B. C.D.
8.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有(  )
A.4个 B.3个 C.2个 D.1个
9.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为(  )
A.﹣1 B.﹣5 C.﹣4 D.﹣3
10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是(  )
A. B. C. D.
11.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为    .
12.函数y=中,自变量x的取值范围是   .
13.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是   .
14.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省   元.
15.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是   .
16.如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:
①比赛开始24分钟时,两人第一次相遇.
②这次比赛全程是10千米.
③比赛开始38分钟时,两人第二次相遇.
正确的结论为   .
17.如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,
(1)关于x,y的方程组的解是   ;
(2)a=   ;
(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.
18.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.
(1)求该一次函数的解析式;
(2)求△AOB的面积.
19.小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:
(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?
(2)小敏几点几分返回到家?
20.某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:
设每天生产A种品牌白酒x瓶,每天获利y元.
(1)请写出y关于x的函数关系式;
(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?
A B
成本(元/瓶) 50 35
利润(元/瓶) 20 15
21.如图,直线y=﹣2x与直线y=kx+b相交于点A(a,2),并且直线y=kx+b经过x轴上点B(2,0)
(1)求直线y=kx+b的解析式.
(2)求两条直线与y轴围成的三角形面积.
(3)直接写出不等式(k+2)x+b≥0的解集.
22.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.
参考答案与
1.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.
故选:D.
2.解:由题意,得
以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,
故选:C.
3.解:A、当x=0时,y=k,即点(0,k)在l上,故此选项正确;
B、当x=﹣1时,y=﹣k+k=0,此选项正确;
C、当k>0时,y随x的增大而增大,此选项正确;
D、不能确定l经过第一、二、三象限,此选项错误;
故选:D.
4.解:直线y=x+b经过点B时,将B(3,1)代入直线中,可得+b=1,解得b=﹣;
直线y=x+b经过点A时:将A(1,1)代入直线中,可得+b=1,解得b=;
直线y=x+b经过点C时:将C(2,2)代入直线中,可得1+b=2,解得b=1.
故b的取值范围是﹣≤b≤1.
故选:B.
5.解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4);
令y=x+4中y=0,则x+4=0,解得:x=﹣6,
∴点A的坐标为(﹣6,0).
∵点C、D分别为线段AB、OB的中点,
∴点C(﹣3,2),点D(0,2).
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,﹣2).
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(﹣3,2),D′(0,﹣2),
∴有,解得:,
∴直线CD′的解析式为y=﹣x﹣2.
令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,
∴点P的坐标为(﹣,0).
故选C.
(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4);
令y=x+4中y=0,则x+4=0,解得:x=﹣6,
∴点A的坐标为(﹣6,0).
∵点C、D分别为线段AB、OB的中点,
∴点C(﹣3,2),点D(0,2),CD∥x轴,
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.
又∵OP∥CD,
∴点P为线段CD′的中点,
∴点P的坐标为(﹣,0).
故选:C.
6.解:当x>1时,x+b>kx+4,
即不等式x+b>kx+4的解集为x>1.
故选:C.
7.解:(1)当m>0,n>0时,mn>0,
一次函数y=mx+n的图象一、二、三象限,
正比例函数y=mnx的图象过一、三象限,无符合项;
(2)当m>0,n<0时,mn<0,
一次函数y=mx+n的图象一、三、四象限,
正比例函数y=mnx的图象过二、四象限,C选项符合;
(3)当m<0,n<0时,mn>0,
一次函数y=mx+n的图象二、三、四象限,
正比例函数y=mnx的图象过一、三象限,无符合项;
(4)当m<0,n>0时,mn<0,
一次函数y=mx+n的图象一、二、四象限,
正比例函数y=mnx的图象过二、四象限,无符合项.
故选:C.
8.解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;
②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15千米/时;故②正确;
④设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故④正确;
③由④知:乙第一次遇到甲时,所走的距离为:6×=6km,故③错误;
所以正确的结论有三个:①②④,
故选:B.
9.解:∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,
∴关于x的不等式﹣x+m>nx+4n的解集为x<﹣2,
∵y=nx+4n=0时,x=﹣4,
∴nx+4n>0的解集是x>﹣4,
∴﹣x+m>nx+4n>0的解集是﹣4<x<﹣2,
∴关于x的不等式﹣x+m>nx+4n>0的整数解为﹣3,
故选:D.
10.解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的增大而减小;
当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的增大而减小;
故选:B.
11.解:由图可知:当x>﹣2时,y>0,即kx+b>0;
因此kx+b>0的解集为:x>﹣2.
12.解:根据题意得:,
解得:x≥1且x≠2.
故答案为:x≥1且x≠2.
13.解:当k>0时,此函数是增函数,
∵当1≤x≤4时,3≤y≤6,
∴当x=1时,y=3;当x=4时,y=6,
∴,解得,
∴=2;
当k<0时,此函数是减函数,
∵当1≤x≤4时,3≤y≤6,
∴当x=1时,y=6;当x=4时,y=3,
∴,解得,
∴=﹣7.
故答案为:2或﹣7.
14.解:由线段OA的图象可知,当0<x<2时,y=10x,
1千克苹果的价钱为:y=10,
设射线AB的解析式为y=kx+b(x≥2),
把(2,20),(4,36)代入得:,
解得:,
∴y=8x+4,
当x=3时,y=8×3+4=28.
当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),
30﹣28=2(元).
则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.
15.解:方法一:
直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,
联立两直线解析式得:,
解得:,
即交点坐标为(,),
∵交点在第一象限,
∴,
解得:m>1.
故答案为:m>1.
方法二:如图所示:
把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,
则m的取值范围是m>1.
故答案为:m>1.
16.解:①15到33分钟的速度为km/min,
∴再行1千米用的时间为9分钟,
∴第一次相遇的时间为15+9=24min,正确;
②第一次相遇时的路程为6km,时间为24min,
所以乙的速度为6÷24=0.25km/min,
所以全长为48×0.25=12km,故错误;
③甲第三段速度为5÷10=0.5km/min,7+0.5×(t﹣33)=0.25t,
解得t=38,正确,
故答案为:①③.
17.解:(1)把x=1代入y=x+1,得出y=2,
函数y=x+1和y=ax+3的图象交于点P(1,2),
即x=1,y=2同时满足两个一次函数的解析式.
所以关于x,y的方程组的解是.
故答案为;
(2)把P(1,2)代入y=ax+3,
得2=a+3,解得a=﹣1.
故答案为﹣1;
(3)∵函数y=x+1与x轴的交点为(﹣1,0),
y=﹣x+3与x轴的交点为(3,0),
∴这两个交点之间的距离为3﹣(﹣1)=4,
∵P(1,2),
∴函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积为:×4×2=4.
18.解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,
解得.
所以一次函数解析式为y=x+;
(2)把x=0代入y=x+得y=,
所以D点坐标为(0,),
所以△AOB的面积=S△AOD+S△BOD
=××2+××1
=.
19.解:(1)小敏去超市途中的速度是:3000÷10=300(米/分),
在超市逗留了的时间为:40﹣10=30(分).
(2)设返回家时,y与x的函数解析式为y=kx+b,
把(40,3000),(45,2000)代入得:

解得:,
∴函数解析式为y=﹣200x+11000,
当y=0时,x=55,
∴返回到家的时间为:8:55.
20.解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得
y=20x+15(600﹣x)=5x+9000;
(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得
50x+35(600﹣x)≥26400,解得x≥360,
∴每天至少获利y=5x+9000=10800.
21.解:(1)把A(a,2)代入y=﹣2x中,得﹣2a=2,
∴a=﹣1,
∴A(﹣1,2)
把A(﹣1,2),B(2,0)代入y=kx+b中得,
∴k=﹣,b=,
∴一次函数的解析式是y=﹣x+;
(2)设直线AB与Y轴交于点C,则C(0,)
∴S△AOC=××1=;
(3)不等式(k+2)x+b≥0可以变形为kx+b≥﹣2x,
结合图象得到解集为:x≥﹣1.
22.解:(1)设直线AB的解析式是y=kx+b,
根据题意得:,
解得:,
则直线的解析式是:y=﹣x+6;
(2)在y=﹣x+6中,令x=0,解得:y=6,
S△OAC=×6×4=12;
(3)设OA的解析式是y=mx,则4m=2,
解得:m=,
则直线的解析式是:y=x,
∵当△OMC的面积是△OAC的面积的时,
∴M的横坐标是×4=1,
在y=x中,当x=1时,y=,则M的坐标是(1,);
在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).
则M的坐标是:M1(1,)或M2(1,5).