2012年中考复习---圆的基本知识综合(无答案)

文档属性

名称 2012年中考复习---圆的基本知识综合(无答案)
格式 zip
文件大小 277.8KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2012-11-08 16:05:52

图片预览

文档简介

中考选题----圆的基本知识
1.(2012宁波) 如图,△ABC中,,,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为 。
2. (2012绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点。
2、连接AB,BC,CA.△ABC即为所求的三角形。
对于甲、乙两人的作法,可判断(  )
  A. 甲、乙均正确 B.甲、乙均错误 C.甲正确、乙错误 D.甲错误,乙正确
3. (2012绍兴)如图,扇形DOE的半径为3,边长为的菱形OABC的顶点A,C,B分别在OD,OE,上,若把扇形DOE围成一个圆锥,则此圆锥的高为(  )
  A. B. C. D.
4. (2012嘉兴)如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为   .
5.(2012舟山)如图,已知⊙O的半径为2,弦AB⊥半径OC,沿AB将弓形ACB翻折,使点C与圆心O重合,则月牙形(图中实线围成的部分)的面积是_____________.
6. (2012金华)如图,点A、B、C是⊙O上三点,∠AOC=130°,则∠ABC等于_______. 
7.(2012台州) 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为_______厘米.
8.(2012湖州) 如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是_________.
9.(2012衢州)用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是(  )
A.cm  B.3cm  C.4cm  D.4cm
10. (2012?衢州)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为 _________ mm.
11. (2012天津)如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O上一点,若∠CAB=55°,则∠ADC的大小为_______(度).
12.(2012安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= __________度。
?
13.(2012上海) 如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
※(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出x的取值范围。
14.(2012陕西)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为_________。
15.(2012山西)如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是_______.
16.(2012广东)如图,在?ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 ___________(结果保留π).
17.(2012成都) 一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为 _________?(结果保留π)
18. (2012兰州)如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为__________________.
19.(2012长沙)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;
(2)求圆心O到BC的距离OD.
20.(2012黄石)如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为______.
21.(2012襄阳)如图,从一个直径为4 的圆形铁皮中剪出一个圆心角为60°的扇形ABC,并将剪下来的扇形围成一个圆锥,则圆锥的底面半径为__________.
22. (2012烟台)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为 ______________
23.(2012临沂) 如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为___________.
24.(2012凉山州) 如图,小正方形构成的网络中,半径为1的⊙O在格点上,则图中阴影部分两个小扇形的面积之和为 _________?(结果保留π).
我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段的最小覆盖圆就是以线段为直径的圆.
(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);
(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);
(3)某地有四个村庄(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.
解:(1)如图所示:4分
(注:正确画出1个图得2分,无作图痕迹或痕迹不正确不得分)
(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; 6分
若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆. 8分
(3)此中转站应建在的外接圆圆心处(线段的垂直平分线与线段的垂直平分线的交点处). 10分
理由如下:由,
,,故是锐角三角形,
所以其最小覆盖圆为的外接圆,设此外接圆为,直线与交于点,则.
故点在内,从而也是四边形的最小覆盖圆.
所以中转站建在的外接圆圆心处,能够符合题中要求.