1.2 二次根式的性质
一.选择题
1. 下列式子:①()2=19;②()2=-19;③()2=a-b;④a=-()2(a≤0).其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
2. 的值等于( )
A.2 B.-2 C.- D.
3. 的值等于( )
A.±(-50) B.±50 C.-50 D.50-
4. 下列化简正确的是( )
A.=×=4×=2
B.=×=(-2)×(-3)=6
C.=×=7
D.=×=2
5. 如果=5-a,那么a的取值范围是( )
A.任意实数 B.a≤5 C.a≥5 D.a≠5
6. 若=-a,则实数a在数轴上的对应点一定在( ).
A. 原点左侧 B. 原点右侧 C. 原点或原点左侧 D. 原点或原点右侧
7. 已知=,则a的取值范围是( )
A.a>0 B.a<1 C.0<a<1 D. 0<a≤1
8. 下列命题中,错误的是( )
A.若=5,则x=5
B.若a(a≥0)为有理数,则是它的算术平方根
C.化简的结果是π-3
D.在直角三角形中,若两条直角边长分别是,2,则斜边长为5
9.已知﹣1<a<0,化简+的结果为( )
A.2a B.2a+ C. D.﹣
10.若实数x满足|x﹣3|+=7,化简2|x+4|﹣的结果是( )
A.4x+2 B.﹣4x﹣2 C.﹣2 D.2
11.某数学兴趣小组在学习二次根式后,研究了如下四个问题,其中错误的是( )
A.在a>1的条件下化简代数式的结果为2a﹣1
B.的值随a变化而变化,当a取某个数值时,上述代数式的值可以为0.6 C.当的值恒为定值时,字母a的取值范围是a≤1
D.若,则字母a必须满足a≥1
二.填空题
12.化简:=_________;=__________;=_______.
13.化简:=________;=________;=_________.
14. 当a<0时,化简的结果是_________.
15.已知是整数,则满足条件的最小正整数n为__________.
16.已知P是平面直角坐标系内一点.若点P的坐标为(,-),则该点到原点的距离是________.
17.计算:+++…+=________.
18.已知实数a在数轴上的位置如图所示,则化简|a﹣1|﹣的结果是 .
19.化简= .
20.实数a、b在数轴上位置如图,化简:|a+b|+= .
三.解答题
21. 已知,求x、y的值.
22. 已知a,b,c是△ABC的三边长,化简-+.
23.观察下列各式:
请利用你所发现的规律,解决下列问题:
(1)第4个算式为: ;
(2)求的值;
(3)诸直接写出的结果.
【分析】根据题目的规律进行计算即可.不难发现由根号形式转化为积的形式.因此
(1)可以猜想到接下来的第4个算式为:,
(2)题中可以根据题目进行每一项的转化.从而计算出结果;
(3)第(2)题进一步扩展到n项即可.详见解答过程.
24.设a,b,c为△ABC的三边,化简:
++﹣.
25.已知:m是的小数部分,求的值.
参考答案
1-5.CADCB 6-11.CDADAB
12. 8,15 , 6
13. , ,
14.
15. 5
16.3
17.-1
18. 1﹣2a.
19. π﹣3.
20. ﹣2a
21. 解:因为和都是非负数,根据几个非负数之和等于0,可知这两个非负数都等于0,可知,
从而,解之,得x=-1,y=4
22. 解:∵a,b,c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|-|b+c-a|+|c-b-a|=a+b+c-(b+c-a)+(b+a-c)=a+b+c-b-c+a+b+a-c=3a+b-c
23.解:(1)依题意:接下来的第4个算式为:
故答案为
(2)原式=
=
=
=
(3)原式=
=
=
=
24.解:根据a,b,c为△ABC的三边,得到a+b+c>0,a﹣b﹣c<0,b﹣a﹣c<0, c﹣b﹣a<0,
则原式=|a+b+c|+|a﹣b﹣c|+|b﹣a﹣c|+|c﹣b﹣a|=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.
25解:∵m是的小数部分,
∴m=﹣2,
原式==|m﹣|
∵m=﹣2,
∴==+2,即>m,
∴原式=﹣(m﹣)
=﹣m+
=﹣(﹣2)++2
=4.