位置的表示方法
教学内容:沪教版四年级第二学期第六单元整理与提高P83页。
教学目标:
1.借助生活情境,体验数对的形成过程,理解数对的意义,掌握数对的读法与写法。
2.经历观察演示、抽象推理等活动,初步体验平面直角坐标系的建构过程。
3.掌握使用有序整数对(a,b)表示物体在平面中的位置。
教学重点:用有序整数对(a,b)表示物体在平面中的位置。
教学难点:理解有序整数对(a,b)的含义。
教学过程:
复习引入
1.小胖的班级来了一位新同学小亮,老师给小亮安排了座位。
(1)问题1:在这一行中,小亮的位置怎么表示?
(2)问题2:在这一列中,小亮的位置怎么表示?
小结:我们已经学会了用“第几个”来表示在一行或一列中物体的位置。
2.揭示课题
这节课我们要继续学习位置的表示方法。(板书:位置的表示方法)
探究新知
(一)平面场景中物体位置的表示方法
1.出示班级座位图
提问:这是班级所有人的座位图,现在小亮的位置怎么表示?
2.规范表达方式
一般可以用“第几列第几行”来表示,现在小亮的位置可以用“第4列第3行”来表示。(板书:小亮 第4列第3行)
提问:按照这样的规则,XX的位置怎么表示?“第a列第b行”表示谁的位置?(板书)
小结:在座位图中,我们可以用“第几列第几行”的方法来表示出每个人的位置。
(二)平面图中物体(点)位置的表示方法
1.数对的认识
(1)自主尝试
提问:在数学中有种更简便的方法表示这些学生的位置,你猜猜看小亮的位置又会怎样表示呢?
要求:把你的表示方法写在练习纸上,并和同桌说说自己的想法。
(2)互动交流
提问:仔细观察、比较这些表示方法,有哪些相同的地方?
追问:你们为什么都用到了数字4和数字3这两个数字?这几种表示方法中两个数字之间为什么都有分隔符号?比较一下用哪个分隔符号比较好?这种表示方法中的括号又表示什么意思呢?
(3)介绍数对
①像(4,3)这样的一组数,叫做数对。(板书:数对)
②写法指导:书写时先写表示列的数字4,中间用逗号隔开,再写表示行的数字3,最后不要忘记加上小括号。
③读法指导:读的时候逗号和括号不用读出来。
小结:现在小亮的位置可以用(4,3)来表示。
(4)表达练习
问题1:小胖的位置用哪个数对来表示呢?(请学生示范写法与读法)
问题2:小丁丁的位置用哪个数对来表示呢?(独立书写再读给同桌听)
问题3:数对(a,b)表示谁的位置呢?(课件演示)
小结:在平面座位图中,我们可以用数对更方便地表示出每个人的位置。(课件演示)
2.平面图中点的位置表示方法
(1)初步认识直角坐标系
其实在数学中,可以像这样用数对表示出平面上这些点的位置。
提问:仔细观察这里每一列的数对有什么特点?每一行的数对又有什么特点?(课件动态演示)
小结:为了更方便表示出平面上点的位置,科学家又给它加上了横轴与纵轴,横轴与纵轴的交点用0表示。(出示:科学家笛卡尔发明了直角坐标系)
(2)用数对表示坐标图中点的位置
问题组1:这个点的位置用哪个数对来表示?你是怎么想的?(2,4)表示哪个点的位置?你是怎么看出来的?比较(2,4)和(4,2)这两个数对,它们表示的位置相同吗?
问题组2:这三个点的位置用数对怎么表示呢?说说你的想法?
问题组3:你能在图中找到(7,3)表示的那个点吗?(7,5)表示的点呢?
小结:我们可以用数对表示出这个平面图上更多点的位置,同样,像这样的每一个数对都能在图中找到对应的点。
3.总结:通过刚才的学习,我们认识了数对,知道了可以用数对表示出某个点在平面中的位置。用数对表示位置时,按照先列后行即先横轴后纵轴的顺序来表示。
三、巩固练习
1.用数对表示图中带有“★”物体的位置。
_______ _______ _______ _______ _______
2.小胖,小杰,小巧三个人在海岛上玩捉迷藏,小胖藏在(5,6)的位置,小杰藏在(3,4)的位置,小巧说:“我跟小胖是一列的,跟小杰是一行的,你能猜出我藏在_______。(可在图上画一画)
3.小胖现在的位置是(6,2),他先向东走5格,接着他又向北走了6格,他现在的位置在_______。(可在图上画一画)
4.拓展应用
其实,生活中有很多地方也也会用数对表示位置。(你能试着举个例子吗?)老师也带来了这样几个例子,我们一起来看看。
四、总结收获
今天你有什么收获吗?
《位置的表示方法》设计说明
《位置的表示方法》这节课属于沪教版小学数学四年级第二学期p83数学广场的内容。从学生已有知识经验来看,他们在低年级的时候已经会用直线上的点来描述数的顺序和大小关系,在统计图中接触过横轴和纵轴的知识。日常生活中也积累了用类似“第几排第几个”的方式描述物体位置的方法。通过这节课的学习,主要是将学生在日常生活中积累起来的描述物体所在位置的经验上升到用抽象的数对来确定位置,初步感悟数形结合的思想方法,同时也为学生第三学段学习平面直角坐标系做一些铺垫和准备。那么,在本课的教学中,怎样让学生在已有经验的基础上,掌握运用数对确定位置的适用范围以及其中所隐含的数学规则 怎样让学生在新旧经验的冲突中引发学生的数学思考,实现对新知的自主建构,进而完成认知结构的重组与优化,深度理解用数对确定位置的思想与方法 对此,我们进行了实践与思考。
情境引入环节,我设计了找小亮在一行一列中的位置。复习学生在一维位置的表示方法。
在探究新知环节我设计了三个部分。第一部分平面场景中物体位置的表示方法。用学生熟悉的教室里有序排列的座位场景,用“现在小亮的位置怎样表示”这个问题来激发学生已有的经验。在日常生活中也积累了用类似“第几排第几个,第几列第几行”的方式描述物体位置的经验。帮助学生找到新旧知识的连接点。把学生的认知结构由一维引入二维,初步发展学生的空间观念。这一环节让学生表达不同的观点,然后对学生的表示方法进行统一规范表示。
第二部分认识数对。在学会用第几列第几行表示位置后,让学生自己设计更简便的表示方法。给学生自主创作的时间,再引导学生发现不同表示方法中的的共同属性,从而引出出数对的概念,介绍读法与写法。在这一过程中,让学生经历将文字表示方法转换成数学模型的过程。
第三部分初步建立直角坐标系。在认识了数对后,我设计了把座位图转化成点。这样设计的目的是让学生感受点表示的数对表其实是和每人表示的位置是一样的。再通过每一列,每一行中数对的特点把点转化到点图。再补充横轴和纵轴建立直角坐标系。接着通过在直角坐标上用数对表示点的位置。比较数对(2,4)和(4,2)的位置为什么不同。让学生进一步理解数对是有序的,接着让学生说说横纵轴上的点,数对(0,0)这样特殊位置的点用数对怎样表示。把坐标系上的点给学生补充完整。接下来让学生找了2个在已知直角坐标系外的点,目的是让学生理解坐标系是可以无限延伸的,数对与平面上的点是一一对应的。
巩固练习环节,我设计了3题,第一题是基础题,考察学生是否能用有序整数对(a,b)表示物体在平面中的位置。第二天是根据同一列,同一行来找小巧的位置。第三题是结和东南西北来找小胖的位置。接着给学生拓展下生活中有很多地方也也会用数对表示位置。例如棋盘,地图,等。最后,一道探究题,激发学生探究的兴趣,也把学生的认知结构由一维到二维再延伸到三维。
位置的表示方法》教学反思
《位置的表示方法》这节课是要求学生能用数对来确定位置,是在学生学习了序数、数射线和“东西南北”这些知识后教学的。本课的教学目标是: 1、知道并能够初步使用有序整数对(a,b)表示物体在平面中的位置。 2、在看一看、想一想、说一说、做一做的学习活动中,加深学生对使用有序整数对(a,b)表示物体在平面中位置的认识。 3、让学生感受用数对表示位置的丰富现实背景,体会数学的价值。在此之前,学生也已会用语言文字描述自己在教室中的位置,数对的学习将为学生以后学习直角坐标的知识打下基础。
“数对”这一数学知识对于学生来说是比较抽象的,为了解决这一问题,我在这节课的设计中注意了以下几点。
1、为了能激发学生的学习兴趣,在本课的教学中,我始终围绕与学生的生活密切相关或学生感兴趣的话题进行教学。从课一开始的在教室中找小胖,这里创设了轻松、和谐的课堂氛围,有唤醒学生已有对确定位置的认知,为下一步的自主探究提供了基础,也为抽象出“数对”构建了一个现实模型。然后到在班级里找自己与好朋友在平面中的位置,在地图上找景点在平面上的位置,都是学生比较感兴趣的。在这些环节中,学生尤其对在教室里找自己与好朋友在平面中的位置这个内容感兴趣,课堂气氛活跃,学生参与的积极性高,大部分学生通过本课的学习,都能正确掌握如何使用整数对(a,b)来表示物体在平面中的位置,也都能用语言来表述这两个数的意思。由此可见,在课堂教学中,通过情境的创设,可以把枯燥的教学变得生动有趣,使学生在有趣好玩的过程中掌握新知识,真正体现了玩中学、学中玩的教学理念,也是学生感受到数学来源于生活,生活中处处有数学,感受到学好数学的重要性。同时也活跃了课堂气氛,使学生想说、乐说、善说。
2、自主探究与引导深化相结合,提供了知识构建的基本过程,准确揭示数对构成及含义。这其中设计了两个环节,首先,让学生自己根据问题进行思考,用自己喜欢的解决问题,这一过程是开放的,学生的思维得到了很好的拓展,在此之后,教师在学生交流中合理引导,充分发挥信息技术的优势,丰富的感性材料,合理的动态演示,激发了学生习兴趣,启迪学生的有序思维,有利于学生对“数对”有个清晰的理解。
3、整个教学过程我采用多样化的呈现方式,激励学生学习生活中的数学,在后一教学环节中,有意识地的创设生活情境,让学生在数学交流中,培养了应用知识、解决问题的能力,同时使学生真切地感受到数学知识来源于生活,应用于生活。
当然,在本课的教学中,还暴露出一些不足之处,如:我的语言还不够精炼;在新授的环节,可以多让学生讲一讲每一个数对中两个数分别表示什么;学生在新知识的教学过程中缺少对学生方法的指导,出现部分学生在用数对表示自己在班级中的位置时,没有将两个数用括号括起来的现象。