(
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
) (
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
) (
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
)
中小学教育资源及组卷应用平台 (
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
) (
学校:___________姓名:___________班级:___________考号:___________
) (
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
)
保密★启用前
2021-2022学年浙江八年级数学下第五章《特殊平行四边形》易错题
学校:___________姓名:___________班级:___________考号:___________
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
一、单选题(共30分)
1.(本题3分)下列判断错误的是( )
A.两组对边分别相等的四边形是平行四边形
B.四个内角都相等的四边形是矩形
C.四条边都相等的四边形是菱形
D.两条对角线垂直且平分的四边形是正方形
【答案】D
【解析】
【分析】
分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.
【详解】
解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;
B、∵四边形的内角和为360°,四边形的四个内角都相等,
∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,
∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;
C、四条边都相等的四边形是菱形,符合菱形的判定,故本选项正确,不符合题意;
D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;
故选:D.
【点睛】
本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.
2.(本题3分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形
C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形
【答案】D
【解析】
【分析】
根据菱形、矩形、正方形的判定定理判断即可.
【详解】
解:A. 当AB=BC时,它是菱形,正确,不符合题意;
B. 当AC⊥BD时,它是菱形,正确,不符合题意;
C. 当∠ABC=90°时,它是矩形,正确,不符合题意;
D. 当AC=BD时,它是矩形,原选项不正确,符合题意;
故选:D.
【点睛】
本题考查了菱形、矩形、正方形的判定,解题关键是熟记相关判定定理,准确进行判断.
3.(本题3分)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是( )
A.3 B.4 C.5 D.6
【答案】C
【解析】
【分析】
在Rt△ABC中利用勾股定理可求出AC=10,设BE=a,则CE=8﹣a,根据折叠的性质可得出BE=FE=a,AF=AB=6,∠AFE=∠B=90°,进而可得出FC=4,在Rt△CEF中,利用勾股定理可得出关于a的一元二次方程,解之即可得出a值,将其代入8﹣a中即可得出线段CE的长度.
【详解】
解:在Rt△ABC中,AB=6,BC=8,
∴AC=10.
设BE=a,则CE=8﹣a,
根据翻折的性质可知,BE=FE=a,AF=AB=6,∠AFE=∠B=90°,
∴FC=4.
在Rt△CEF中,EF=a,CE=8﹣a,CF=4,
∴CE2=EF2+CF2,即(8﹣a)2=a2+42,
解得:a=3,
∴8﹣a=5.
故选C.
【点睛】
本题考查了翻折变换、矩形的性质、勾股定理以及解一元二次方程,在Rt△CEF中,利用勾股定理找出关于a的一元二次方程是解题的关键.
4.(本题3分)菱形的周长为8cm,高为1cm,则菱形两邻角度数比为( )
A.4:1 B.5:1 C.6:1 D.7:1
【答案】B
【解析】
【分析】
先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.
【详解】
如图所示:∵四边形ABCD是菱形,菱形的周长为8,
∴AB=BC=CD=DA=2,∠DAB+∠B=180,
∵AE=1,AE⊥BC,
∴AE=AB,
∴∠B=30,
∴∠DAB=150,
∴∠DAB:∠B=5:1;
故选B.
【点睛】
本题考查菱形的性质.
5.(本题3分)下列结论中,矩形具有而菱形不一定具有的性质是( )
A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直
【答案】C
【解析】
【分析】
矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.
【详解】
A、菱形、矩形的内角和都为360°,故本选项错误;
B、对角互相平分,菱形、矩形都具有,故本选项错误;
C、对角线相等菱形不具有,而矩形具有,故本选项正确;
D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误;
故选:C
【点睛】
本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.
6.(本题3分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )
A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形
B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形
C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形
D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形
【答案】D
【解析】
【分析】
根据连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断,即可求解
【详解】
解:A.当E,F,G,H是各边中点,且AC=BD时,EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;
B.当E,F,G,H是各边中点,且AC⊥BD时,∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;
C.当E,F,G,H不是各边中点时,EF∥HG,EF=HG,故四边形EFGH为平行四边形,故C正确;
D.当E,F,G,H不是各边中点时,四边形EFGH可能为菱形,故D错误;
故选D.
7.(本题3分)如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=25°,则的度数为( )
A.122.5° B.130° C.135° D.140°
【答案】A
【解析】
【分析】
由折叠的性质知:、都是直角,因此,那么和∠BEF互补,欲求的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解.
【详解】
解:Rt△ABE中,∠ABE=25°,
∴∠AEB=;
由折叠的性质知:∠BEF=∠DEF;
而∠BED=180°-∠AEB=115°,
∴∠BEF=;
∵=∠D==∠C=90°,
∴,
∴
∴=180°-∠BEF=122.5°.
故选A.
【点睛】
本题主要考查折叠的性质及平行线的性质,掌握折叠的性质及平行线的性质是解题的关键.
8.(本题3分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )
A. B.1 C. D.2
【答案】B
【解析】
【分析】
先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.
【详解】
解:如图
作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.
∵菱形ABCD关于AC对称,M是AB边上的中点,
∴M′是AD的中点,
又∵N是BC边上的中点,
∴AM′∥BN,AM′=BN,
∴四边形ABNM′是平行四边形,
∴M′N=AB=1,
∴MP+NP=M′N=1,即MP+NP的最小值为1,
故选B.
9.(本题3分)如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于 E,PF⊥AC于 F,M 为 EF 中点,则 AM 的最小值为( )
A.1 B.1.3 C.1.2 D.1.5
【答案】C
【解析】
【分析】
首先证明四边形AEPF为矩形,可得AM=AP,最后利用垂线段最短确定AP的位置,利用面积相等求出AP的长,即可得AM.
【详解】
在△ABC中,因为AB2+AC2=BC2,
所以△ABC为直角三角形,∠A=90°,
又因为PE⊥AB,PF⊥AC,
故四边形AEPF为矩形,
因为M 为 EF 中点,
所以M 也是 AP中点,即AM=AP,
故当AP⊥BC时,AP有最小值,此时AM最小,
由,可得AP=,
AM=AP=
故本题正确答案为C.
【点睛】
本题考查了矩形的判定和性质,确定出AP⊥BC时AM最小是解题关键.
10.(本题3分)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有( )
A.0个 B.1个 C.2个 D.3个
【答案】D
【解析】
【分析】
由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.
【详解】
解:①∵四边形ABCD和EFGC都为正方形,
∴CB=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.
在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,
∴△BCE≌△DCG,
∴BE=DG,
故结论①正确.
②如图所示,设BE交DC于点M,交DG于点O.
由①可知,△BCE≌△DCG,
∴∠CBE=∠CDG,即∠CBM=∠MDO.
又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,
∴∠DOM=∠MCB=90°,
∴BE⊥DG.
故②结论正确.
③如图所示,连接BD、EG,
由②知,BE⊥DG,
则在Rt△ODE中,DE2=OD2+OE2,
在Rt△BOG中,BG2=OG2+OB2,
在Rt△OBD中,BD2=OD2+OB2,
在Rt△OEG中,EG2=OE2+OG2,
∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.
在Rt△BCD中,BD2=BC2+CD2=2a2,
在Rt△CEG中,EG2=CG2+CE2=2b2,
∴BG2+DE2=2a2+2b2.
故③结论正确.
故选:D.
【点睛】
本题考查了旋转的性质、全等三角形的判定与性质、勾股定理,正方形的性质.
第II卷(非选择题)
请点击修改第II卷的文字说明
二、填空题(共21分)
11.(本题3分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为_________cm.
【答案】4.
【解析】
【详解】
试题解析:∵四边形ABCD是矩形,
∴OA=AC,OB=BD,BD=AC=8cm,
∴OA=OB=4cm,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=4cm.
考点:矩形的性质.
12.(本题3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.
【答案】2
【解析】
【分析】
利用菱形的面积等于对角线乘积的一半求解.
【详解】
解:菱形的面积=×1×4=2.
故答案为2.
【点睛】
本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=ab(a、b是两条对角线的长度).
13.(本题3分)如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE⊥DF,垂足为点O,△AOD的面积为,则图中阴影部分的面积为_____.
【答案】
【解析】
【分析】
先证得△ADF△BAE,再利用等量代换即可求得阴影部分的面积等于△AOD的面积.
【详解】
解:正方形ABCD中,
∠DAF=∠ABE=90,AD=AB,
∵AE⊥DF,
∴∠DOA=∠DAF =90,
∴∠DAO+∠ADF =∠DAO +∠FAO =90,
∴∠ADF =∠FAO,
在△ADF和△BAE中,
,
∴△ADF△BAE,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,解题的关键是证得阴影部分的面积等于△AOD的面积.
14.(本题3分)如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.
【答案】4
【解析】
【分析】
由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.
【详解】
解:如图,设AC与BD的交点为O,连接PO,
∵四边形ABCD是矩形
∴AO=CO=5=BO=DO,
∴S△DCO=S矩形ABCD=10,
∵S△DCO=S△DPO+S△PCO,
∴10=×DO×PF+×OC×PE
∴20=5PF+5PE
∴PE+PF=4
故答案为4
【点睛】
本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.
15.(本题3分)如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.
【答案】13
【解析】
【分析】
本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=13.
【详解】
解:∵ABCD是正方形(已知)
∴AB=AD,∠ABC=∠BAD=90°
又∵∠FAB+∠FBA=∠FAB+∠EAD=90°
∴∠FBA=∠EAD(等量代换)
∵BF⊥a于点F,DE⊥a于点E
∴在Rt△AFB和Rt△AED中
∵
∴△AFB≌△DEA(AAS)
∴AF=DE=8,BF=AE=5(全等三角形的对应边相等)
∴EF=AF+AE=DE+BF=8+5=13
故答案为:13
【点睛】
本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质及熟悉一线三角模型是解本题的关键.
16.(本题3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为____
【答案】3或
【解析】
【分析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,
∴BE=AB=3.
综上所述,BE的长为或3.
故答案为:或3.
【点睛】
此题考查了折叠和矩形的性质,勾股定理的运用,正方形的判定和性质等知识,解题的关键是熟练掌握折叠和矩形的性质,勾股定理的运用,正方形的判定和性质.
17.(本题3分)如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
【答案】
【解析】
【分析】
以BM为边作等边△BMN,以BC为边作等边△BCE,如图,则△BCM≌△BEN,由全等三角形的对应边相等得到CM=NE,进而得到AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.根据等腰三角形“三线合一”的性质得到BH⊥AE,AH=EH,根据30°直角三角形三边的关系即可得出结论.
【详解】
以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.
∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,∴BH=AB=3,AH=BH=,∴AE=2AH=.
故答案为.
【点睛】
本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.
三、解答题(共49分)
18.(本题6分)如图,四边形是平行四边形, ,垂足分别为,且.
(1)求证:四边形是菱形;
(2)连接并延长,交的延长线于点,若,求的长.
【答案】(1)详见解析;(2)4.
【解析】
【分析】
(1)根据平行四边形的性质可得对角相等,再利用角角边证明△ABE≌△ADF即可.
(2)由平行得出∠G=30°,再根据30°特殊三角形的比求出EG即可.
【详解】
(1)∵四边形ABCD是平行四边形,
∴∠D=∠B,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD,
又∵BE=DF,
∴△ABE≌△ADF(AAS),
∴AB=AD,
∴平行四边形ABCD是菱形.
(2)∵AG//BC,
∴∠G=∠CEG=30°,∠GAE=∠AEB=90°,
∵AE=2,
∴EG=2AE=4.
【点睛】
本题考查菱形的判定和三角形全等的判定和性质及特殊的直角三角形,关键在于结合图形熟练运用基础知识.
19.(本题8分)如图,四边形ABCD中,AD∥BC,AB⊥AC,点E是BC的中点,AE与BD交于点F,且F是AE的中点.
(Ⅰ)求证:四边形AECD是菱形;(Ⅱ)若AC=4,AB=5,求四边形ABCD的面积.
【答案】(Ⅰ)见解析;(Ⅱ)15.
【解析】
【分析】
(Ⅰ)先证四边形ADCE是平行四边形,根据直角三角形斜边上的中线等于斜边的一半可求AE=CE,即可得四边形AECD是菱形;
(Ⅱ)由题意可求S△AEC=S△ACD=S△ABC,即可求四边形ABCD的面积.
【详解】
证明(Ⅰ)∵AD∥BC
∴∠ADB=∠DBE
∵F是AE中点
∴AF=EF且∠AFD=∠BFE,∠ADB=∠DBE
∴△ADF≌△BEF
∴BE=AD
∵AB⊥AC,E是BC中点
∴AE=BE=EC
∴AD=EC,且AD∥BC
∴四边形ADCE是平行四边形
且AE=EC
∴四边形ADCE是菱形;
(Ⅱ)∵AC=4,AB=5,AB⊥AC
∴S△ABC=10
∵E是BC中点
∴S△AEC=S△ABC=5
∵四边形ADCE是菱形
∴S△AEC=S△ACD=5
∴四边形ABCD的面积=S△ABC+S△ACD=15.
【点睛】
本题考查菱形的判定,直角三角形斜边上的中线等于斜边的一半,解题的关键是利用三角形中线的性质求三角形的面积.
20.(本题8分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系.已知,,,点为轴上一动点,以为一边在右侧作正方形.
(1)若点与点重合,请直接写出点的坐标.
(2)若点在的延长线上,且,求点的坐标.
(3)若,求点的坐标.
【答案】(1);(2);(3),.
【解析】
【分析】
(1)与点重合则点E为(6,3)
(2)作轴,证明:即则点E为(8,3)
(3)分情况解答,在点右侧,过点作轴,证明:;在点左侧,点作轴,证明:
【详解】
解:(1) 与点重合则点E再x轴的位置为2+4=6
.
(2)过点作轴,
∵∠BAD=∠EMD=∠BDE=90°,
∴∠BDA+∠ABD=∠BDA+∠MDE,
∴∠ABD=∠MDE,
∵BD=DE,
,点在线段的中垂线上,.
,.
.
(3)①点在点右侧,如图,
过点作轴,同(2)
设,可得:,
求得:,(舍去)
②点在点左侧,如图,
过点作轴,同上得
设,可得:,
,
求得:,(舍去)
综上所述:,
【点睛】
本题考查正方形的性质,解题关键在于分情况作出垂直线.
21.(本题8分)图①,图②均为的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段,在图②中已画出线段,其中均为格点,按下列要求画图:
⑴在图①中,以为对角线画一个菱形,且为格点;
⑵在图②中,以为对角线画一个对边不相等的四边形,且为格点,.
【答案】(1)见解析;(2)见解析.
【解析】
【分析】
(1)根据菱形的定义画出图形即可(答案不唯一).
(2)利用数形结合的思想解决问题即可.
【详解】
解:(1)如图,菱形AEBF即为所求.
(2)如图,四边形CGDH即为所求.
【点睛】
本题考查作图-应用与设计,菱形的判定和性质,直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
22.(本题9分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
【答案】(1)证明见解析;(2)90°;(3)AP=CE
【解析】
【分析】
(1)根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;
(2)根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;
(3)首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠DEP,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.
【详解】
(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
又∵ PB=PB,
∴△ABP ≌△CBP(SAS),
∴PA=PC,
∵PA=PE,
∴PC=PE;
(2)解:由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP,
∴∠DAP=∠DCP,
∵PA=PE,
∴∠DAP=∠E,
∴∠DCP=∠E,
∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;
(3)AP=CE
理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,
在△ABP和△CBP中,又∵ PB=PB,
∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠BCP,
∵PA=PE,
∴PC=PE,
∴∠DAP=∠DCP,
∵PA=PE,
∴∠DAP=∠DEP,
∴∠DCP=∠DEP,
∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠DEP,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,
∴△EPC是等边三角形,
∴PC=CE,
∴AP=CE.
23.(本题10分)如图所示,四边形是矩形,点A、C的坐标分别为,,点D是线段上的动点(与端点B、C不重合),过点D作直线交折线于点E.
(1)记的面积为S,求S与b的函数关系式,并求出自变量b的取值范围;
(2)当点E在线段上时,若矩形关于直线的对称图为四边形,试探究与矩形的重叠部分的四边形是什么特殊四边形,并说明理由.
(3)若,试求出(2)中重叠部分四边形的面积.
【答案】(1);(2)菱形,理由见解析;(3)
【解析】
【分析】
(1)首先求得直线经过点,,时,的值;然后分别从若直线与折线的交点在上时,即时与若直线与折线的交点在上时,即时分析求解,即可求得与的函数关系式;
(2)首先设O′A′与CB相交于点M,OA与C′B′相交于点N,则矩形O′A′B′C′与矩形OABC的重叠部分的面积即为四边形DNEM的面积.根据轴对称的性质易得四边形DNEM为菱形;
(3)过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,利用勾股定理求出EN的长,即可求出结果.
【详解】
解:(1)∵四边形OABC是矩形,A(3,0),C(0,1),
∴B(3,1),
若直线经过点时,则,
若直线经过点时,则,
若直线经过点时,则,
①若直线与折线的交点在上时,即时,
如图1,此时,
;
②若直线与折线的交点在上时,即时,
如图1,此时,,
,,,,
∴S=S矩形OABC
=,
与的函数关系式为:;
(2)如图3,设与相交于点,与相交于点,则矩形与矩形的重叠部分即为四边形.
由题意知,,,
四边形为平行四边形,
根据轴对称知,,
又,
,
,
平行四边形为菱形.
(3)∵,
∴此时△ODE的面积为,
∴OE==,
在直线中,,
令y=1,则x=,
∴D(,1),
过点作,垂足为,如图3,
可得:OH=,
∴EH=OE-OH==2,
设菱形的边长为,即DN=NE=a,
∴HN=EH-EN=2-a,
在△DHN中,有,
解得:a=,
∴四边形DNEM的面积===.
【点睛】
此题属于一次函数的综合题,考查了待定系数法求一次函数的解析式、菱形的判定与性质、三角形的面积以及勾股定理等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合、分类讨论思想与方程思想的应用.
试卷第1页,共3页
21世纪教育网(www.21cnjy.com)(
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
) (
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
) (
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
)
中小学教育资源及组卷应用平台 (
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
) (
学校:___________姓名:___________班级:___________考号:___________
) (
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
)
保密★启用前
2021-2022学年浙江八年级数学下第五章《特殊平行四边形》易错题
学校:___________姓名:___________班级:___________考号:___________
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
一、单选题(共30分)
1.(本题3分)下列判断错误的是( )
A.两组对边分别相等的四边形是平行四边形
B.四个内角都相等的四边形是矩形
C.四条边都相等的四边形是菱形
D.两条对角线垂直且平分的四边形是正方形
2.(本题3分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形
C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形
3.(本题3分)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是( )
A.3 B.4 C.5 D.6
4.(本题3分)菱形的周长为8cm,高为1cm,则菱形两邻角度数比为( )
A.4:1 B.5:1 C.6:1 D.7:1
5.(本题3分)下列结论中,矩形具有而菱形不一定具有的性质是( )
A.内角和为360° B.对角线互相平分 C.对角线相等D.对角线互相垂直
6.(本题3分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )
A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形
B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形
C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形
D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形
7.(本题3分)如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=25°,则的度数为( )
A.122.5° B.130° C.135° D.140°
8.(本题3分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )
A. B.1 C. D.2
9.(本题3分)如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于 E,PF⊥AC于 F,M 为 EF 中点,则 AM 的最小值为( )
A.1 B.1.3 C.1.2 D.1.5
10.(本题3分)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有( )
A.0个 B.1个 C.2个 D.3个
第II卷(非选择题)
二、填空题(共21分)
11.(本题3分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为_________cm.
12.(本题3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.
13.(本题3分)如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE⊥DF,垂足为点O,△AOD的面积为,则图中阴影部分的面积为_____.
14.(本题3分)如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.
15.(本题3分)如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.
16.(本题3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为____
17.(本题3分)如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
三、解答题(共49分)
18.(本题6分)如图,四边形是平行四边形, ,垂足分别为,且.
(1)求证:四边形是菱形;
(2)连接并延长,交的延长线于点,若,求的长.
19.(本题8分)如图,四边形ABCD中,AD∥BC,AB⊥AC,点E是BC的中点,AE与BD交于点F,且F是AE的中点.
(Ⅰ)求证:四边形AECD是菱形;(Ⅱ)若AC=4,AB=5,求四边形ABCD的面积.
20.(本题8分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系.已知,,,点为轴上一动点,以为一边在右侧作正方形.
(1)若点与点重合,请直接写出点的坐标.
(2)若点在的延长线上,且,求点的坐标.
(3)若,求点的坐标.
21.(本题8分)图①,图②均为的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段,在图②中已画出线段,其中均为格点,按下列要求画图:
⑴在图①中,以为对角线画一个菱形,且为格点;
⑵在图②中,以为对角线画一个对边不相等的四边形,且为格点,.
22.(本题9分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
23.(本题10分)如图所示,四边形是矩形,点A、C的坐标分别为,,点D是线段上的动点(与端点B、C不重合),过点D作直线交折线于点E.
(1)记的面积为S,求S与b的函数关系式,并求出自变量b的取值范围;
(2)当点E在线段上时,若矩形关于直线的对称图为四边形,试探究与矩形的重叠部分的四边形是什么特殊四边形,并说明理由.
(3)若,试求出(2)中重叠部分四边形的面积.
试卷第1页,共3页
21世纪教育网(www.21cnjy.com)