浙教版数学九年级下册2.2切线长定理基础检测
一、单选题
1.P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是( )
A.4 B.8 C.12 D.不能确定
【答案】B
【知识点】切线的性质
【解析】【解答】解:根据题意画出图形,如图所示,
由直线DA和直线DC为圆O的切线,得到AD=DC,同理,由直线EC和直线EB为圆O的切线,得到EC=EB,
又直线PA和直线PB为圆O的切线,所以PA=PB=4,
则△PDE的周长C=PD+DE+PE=PD+DC+EC+PE
=PD+DA+EB+PE=PA+PB=4+4=8.
故选B
【分析】根据题意画出图形,由PA和PB为圆的切线,根据切线长定理得到PA与PB相等,同理得到DA与DC相等,EC与EB相等,然后表示出三角形PDE的三边和,等量代换后即可求出三角形PDE的周长.
2.如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若AB=10,BC=4,则AD的长( )
A.4 B.5 C.6 D.7
【答案】C
【知识点】切线的性质
【解析】【解答】解:连接OC,OD,设⊙O的半径为r,
∵BC、CD、DA与半⊙O相切,
∴AD和AO的高为r,
∴AO=AD,
同理BO=BC,
∴AB=AO+BO=AD+BC,
又知AB=10,BC=4,
故知AD=6,
故选C.
【分析】连接OC,OD,设⊙O的半径为r,在△AOD和△BOC中,AD和AO,BO和BC上的高都为r,则AO=AD,BO=BC,从而得出BA=AD+BC.
3.已知P为⊙O外一点,PA,PB为⊙O的切线,A、B为切点,∠P=70°,C为⊙O上一个动点,且不与A、B重合,则∠BCA=( )
A.35°、145° B.110°、70°
C.55°、125° D.110°
【答案】C
【知识点】切线的性质
【解析】【解答】解:如图;连接OA、OB,则∠OAP=∠OBP=90°,
∴∠BOA=180°﹣∠P=110°,
∴∠AEB=∠AOB=55°;
∵四边形AEBF是⊙O的内接四边形,
∴∠AFB=180°﹣∠AEB=125°,
①当C点在优弧AB上运动时,∠BCA=∠AEB=55°;
②当C点在劣弧AB上运动时,∠BCA=∠AFB=125°;
故选C.
【分析】连接OA、OB,首先根据四边形内角和求出∠AOB的度数;由于C点的位置有两种情况,需分类讨论.
4.如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=BC;③PB=PF;④AD2=4AB DC.其中正确的是( )
A.①②③④ B.只有①②
C.只有①②④ D.只有③④
【答案】C
【知识点】切线的性质
【解析】【解答】解:∵BA,BE是圆的切线.
∴AB=BE,BO是△ABE顶角的平分线.
∴OB⊥AE
∵AD是圆的直径.
∴DE⊥AE
∴DE∥OF
故①正确;
∵CD=CE,AB=BE
∴AB+CD=BC
故②正确;
∵OD=OF
∴∠ODF=∠OFD=∠BFP
若PB=PF,则有∠PBF=∠BFP=∠ODF
而△ADP与△ABO不一定相似,故PB=PF不一定成了.
故③不正确;
连接OC.可以证明△OAB∽△CDO
∴
即:OA OD=AB CD
∴AD2=4AB DC
故④正确.
故正确的是:①②④.
故选C.
【分析】根据直径所对的圆周角是直角,以及切线长定理,相似三角形的性质即可作出判断.
5.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )
A.4 B.8 C. D.
【答案】B
【知识点】切线的性质
【解析】【解答】解:∵PA、PB都是⊙O的切线,
∴PA=PB,
又∵∠P=60°,
∴△PAB是等边三角形,即AB=PA=8,
故选B.
【分析】根据切线长定理知PA=PB,而∠P=60°,所以△PAB是等边三角形,由此求得弦AB的长.
6.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
A.35° B.45° C.60° D.70°
【答案】D
【知识点】切线的性质
【解析】【解答】解:根据切线的性质定理得∠PAC=90°,
∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.
根据切线长定理得PA=PB,
所以∠PBA=∠PAB=55°,
所以∠P=70°.
故选D.
【分析】根据切线长定理得等腰△PAB,运用内角和定理求解.
7.如图,⊙O是△ABC的内切圆,点D、E分别为边AC、BC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是( )
A.7 B.8 C.9 D.16
【答案】A
【知识点】切线的性质
【解析】【解答】解:∵AB、AC、BC、DE都和⊙O相切,
∴BI=BG,CI=CH,DG=DF,EF=EH.
∴BG+CH=BI+CI=BC=9,
∴C△ADE=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=C△ABC﹣(BG+EH+BC)=25﹣2×9=7.
故选A.
【分析】根据切线长定理,可得BI=BG,CI=CH,DG=DF,EF=EH,则C△ADE=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=C△ABC﹣(BG+EH+BC),据此即可求解.
8.如图,AB、CD分别为两圆的弦,AC、BD为两圆的公切线且相交于P点.若PC=2,CD=3,
DB=6,则△PAB的周长为何( )
A.6 B.9 C.12 D.14
【答案】D
【知识点】切线的性质
【解析】【解答】解:根据切线长定理可得:PD=PC=2,DB=6
∴AP=BP=4
∵PA=PB,PC=PD,即=2
∵∠APB=∠DPC
∴△ABP∽△CDP
易得△CDP的周长是7,所以△PAB的周长是2×7=14.
故选D.
【分析】由切线长定理可求得PA=PB,PC=PD;根据PC、DB的长,即可求出PA、PB的长;易证得△APB∽△DPC,因此两三角形的周长比等于相似比,由此可求出△PAB的周长.
9.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于( )
A.13 B.12 C.11 D.10
【答案】D
【知识点】切线的性质
【解析】【解答】解:∵AB∥CD,
∴∠ABC+∠BCD=180°,
∵CD、BC,AB分别与⊙O相切于G、F、E,
∴∠OBC=∠ABC,∠OCB=∠BCD,BE=BF,CG=CF,
∴∠OBC+∠OCB=90°,
∴∠BOC=90°,
∴BE+CG=10(cm).
故选D.
【分析】根据平行线的性质以及切线长定理,即可证明∠BOC=90°,再根据勾股定理即可求得BC的长,再结合切线长定理即可求解.
10.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是 上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为( )
A.12 B.6 C.8 D.4
【答案】B
【知识点】切线的性质
【解析】【解答】解:∵PA,PB分别和⊙O切于A,B两点,
∴PA=PB,
∵DE是⊙O的切线,
∴DA=DC,EB=EC,
∵△PDE的周长为12,
即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,
∴PA=6.
故选B.
【分析】由PA,PB分别和⊙O切于A,B两点与DE是⊙O的切线,根据切线长定理,即可得PA=PB,DA=DC,EB=EC,又由△PDE的周长为12,易求得PA+PB=12,则可求得答案.
11.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为( )
A.20 B.30 C.40 D.50
【答案】C
【知识点】切线的性质
【解析】【解答】解:据切线长定理有AD=AE,BE=BF,CD=CF;
则△ABC的周长=AB+BC+AC
=AB+BF+CF+AC
=AB+BE+AC+CD
=AD+AE=2AD
=40.
故选C.
【分析】根据切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,将△ABC的周长转化为切线长求解.
12.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是( )
A.4 B.8 C.4 D.8
【答案】B
【知识点】切线的性质
【解析】【解答】解:∵PA,PB分别切⊙O于点A、B,
∴PA=PB,
又∠P=60°,
∴△APB是等边三角形,
∴AB=PA=8.
故选B.
【分析】根据切线长定理和等边三角形的判定方法,发现等边三角形即可求解.
13.如图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=( )
A. B. C. D.
【答案】D
【知识点】切线的性质
【解析】【解答】解:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F
∵AB,AE都为圆的切线
∴AE=AB
∵OB=OE,AO=AO
∴△ABO≌△AEO(SSS)
∴∠OAB=∠OAE
∴AO⊥BE
在直角△AOB里AO2=OB2+AB2
∵OB=1,AB=3
∴AO=
易证明△BOF∽△AOB
∴BO:AO=OF:OB
∴1:=OF:1
∴OF=
sin∠CBE= =
故选D.
【分析】取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F,则易证AO⊥BE,△BOF∽△AOB,则sin∠CBE=,求得OF的长即可求解.
14.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是( )
A.PA=PB B.∠APO=20° C.∠OBP=70° D.∠AOP=70°
【答案】C
【知识点】切线的性质
【解析】【解答】解:∵PA,PB是⊙O的切线,且∠APB=40°,
∴PA=PB,∠APO=∠BPO,∠A=∠B=90°,
∴∠OBP=∠OAP,
∴C是错误的.
故选C.
【分析】根据切线长定理得A,B是正确的;再根据切线的性质定理以及直角三角形的两个锐角互余得D是正确的;根据切线的性质定理得C错误.
15.已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OM∥CD分别交BC与BP于点M、N.下列结论:
①S四边形ABCD= AB CD;
②AD=AB;
③AD=ON;
④AB为过O、C、D三点的圆的切线.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【知识点】切线的性质
【解析】【解答】解:连接OD、AP,
∵DA、DP、BC分别是圆的切线,切点分别是A、P、B,
∴DA=DP,CP=CB,∠A=90°=∠B=∠DPO,
∴AD+BC=DP+CP=CD,
∴S四边形ABCD=(AD+BC) AB=AB CD,∴①正确;
∵AD=DP<OD<AB,∴②错误;
∵AB是圆的直径,
∴∠APB=90°,
∵DP=AD,AO=OP,
∴D、O在AP的垂直平分线上,
∴OD⊥AP,
∵∠DPO=∠APB=90°,
∴∠OPB=∠DPA=∠DOP,
∵OM∥CD,
∴∠POM=∠DPO=90°,
在△DPO和△NOP中
∠PON=∠DPO,OP=OP,∠DOP=∠OPN,
∴△DPO≌△NOP,
∴ON=DP=AD,∴③正确;
∵AP⊥OD,OA=OP,
∴∠AOD=∠POD,
同理∠BOC=∠POC,
∴∠DOC=×180°=90°,
∴△CDO的外接圆的直径是CD,
∵∠A=∠B=90°,
取CD的中点Q,连接OQ,
∵OA=OB,
∴AD∥OQ∥BC,
∴∠AOQ=90°,
∴④正确.
故选C.
【分析】连接OD、AP,根据切线长定理求出AD=DP,CP=BC,根据面积公式判断①即可;根据直角三角形斜边大于直角边即可判断②;证△DPO和△PON全等证出DP=ON即可判断③,证△DOC是直角三角形,取CD中点Q,证出OQ是半径,证梯形ABCD,推出∠AOQ=90°即可判断④.
二、填空题
16.如图,PA、PB分别切圆O于A、B,并与圆O的切线DC分别相交于C、D.已知△PCD的周长等于14cm,则PA= cm.
【答案】7
【知识点】切线的性质
【解析】【解答】解:如图,设DC与⊙O的切点为E;
∵PA、PB分别是⊙O的切线,且切点为A、B;
∴PA=PB;
同理,可得:DE=DA,CE=CB;
则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=14(cm);
∴PA=PB=7cm,
故答案为:7.
【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.
17.(2017·上思模拟)如图,AB,AC,BD是⊙O的切线,P,C,D为切点,如果AB=5,AC=3,则BD的长为 .
【答案】2
【知识点】切线长定理
【解析】【解答】解:∵AC、AP为⊙O的切线,
∴AC=AP,
∵BP、BD为⊙O的切线,
∴BP=BD,
∴BD=PB=AB﹣AP=5﹣3=2.
故答案为:2.
【分析】本题考查了切线长定理,由于AB、AC、BD是⊙O的切线,运用切线长定理并利用等式的性质可得,AC=AP,BP=BD,求出BP的长即可求出BD的长.
18.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若PA=10,则△PCD的周长=
【答案】20
【知识点】切线的性质
【解析】【解答】解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,
∴PB=PA=10,CA=CE,DB=DE,
∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=20.
故答案为:20.
【分析】由PA,PB切⊙O于A、B两点,CD切⊙O于点E,根据切线长定理可得:PB=PA=10,CA=CE,DB=DE,继而可得△PCD的周长=PA+PB.
19.如图,四边形ABCD的各边与⊙O分别相切于点E、F、G、H.若AB=4cm,AD=3cm,BC=3.6cm,则CD= cm.
【答案】2.6
【知识点】切线的性质
【解析】【解答】解:∵四边形ABCD的各边与⊙O分别相切于点E、F、G、H,
∴DG=DH,CG=CF,BF=BE,AE=AH,
则DC+AB=AD+BC
∵AB=4cm,AD=3cm,BC=3.6cm,
∴CD=3+3.6﹣4=2.6.
故答案为:2.6.
【分析】直接利用切线长定理求出DC+AB=AD+BC,进而得出答案.
20.如图,PA,PB是⊙O的切线,CD切⊙O于E,PA=6,则△PDC的周长为
【答案】12
【知识点】切线的性质
【解析】【解答】解:∵CA,CE都是圆O的切线,
∴CA=CE,
同理DE=DB,PA=PB,
∴三角形PDC的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12.
故答案为:12.
【分析】可通过切线长定理将相等的线段进行转换,得出三角形PDE的周长等于PA+PB即可得出答案.
三、解答题
21.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:
(1)PA的长;
(2)∠COD的度数.
【答案】解:(1)∵CA,CE都是圆O的切线,
∴CA=CE,
同理DE=DB,PA=PB,
∴三角形PDE的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,
即PA的长为6;
(2)∵∠P=60°,
∴∠PCE+∠PDE=120°,
∴∠ACD+∠CDB=360°﹣120°=240°,
∵CA,CE是圆O的切线,
∴∠OCE=∠OCA=∠ACD;
同理:∠ODE=∠CDB,
∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,
∴∠COD=180﹣120°=60°.
【知识点】切线的性质
【解析】【分析】(1)可通过切线长定理将相等的线段进行转换,得出三角形PDE的周长等于PA+PB的结论,即可求出PA的长;
(2)根据三角形的内角和求出∠ADC和∠BEC的度数和,然后根据切线长定理,得出∠EDO和∠DEO的度数和,再根据三角形的内角和求出∠DOE的度数.
22.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点.若AO=8cm,DO=6cm,求OE的长.
【答案】解:∵AB∥CD,⊙O为内切圆,
∴∠OAD+∠ODA=90°,
∴∠AOD=90°,
∵AO=8cm,DO=6cm,
∴AD=10cm,
∵OE⊥AD,
∴AD OE=OD OA,
∴OE=4.8cm.
【知识点】切线的性质
【解析】【分析】由⊙O为内切圆,则AO、DO为角平分线,则∠AOD=90°,由勾股定理求得AD,再由切线的性质得OE⊥AD,由三角形的面积公式求出OE的长.
23.已知PA、PB、DE是⊙O的切线,切点分别为A、B、F,PO=13cm,⊙O的半径为5cm,求△PDE的周长.
【答案】解:连接OA,则OA⊥PA.
在直角三角形APO中,PO=13cm,OA=5cm,
根据勾股定理,得
AP=12cm.
∵PA、PB、DE是⊙O的切线,切点分别为A、B、F,
∴PA=PB,DA=DF,EF=EB,
∴△PDE的周长=2PA=24cm.
【知识点】切线的性质
【解析】【分析】连接OA.根据切线的性质定理,得OA⊥PA.根据勾股定理,得PA=12,再根据切线长定理即可求得△PDE的周长.
24.如图:⊙O的直径AB=12,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C,设AD=X,BC=Y,求Y与X的函数关系式,并画出它的大致图象.
【答案】解:过D作DF⊥CB,交CB于点F,
∵DA与DC都为圆O的切线,
∴DA=DE,
又CB与CE都为圆O的切线,
∴CB=CE,
又∠DAB=∠ABF=∠BFD=90°,
∴四边形ABFD为矩形,
∴DA=FB,DF=AB,
在直角三角形CDF中,
∵AD=x,BC=y,AB=12,
∴CD=CE+ED=DA+CB=x+y,DF=AB=12,CF=CB﹣FB=y﹣x,
根据勾股定理得:CD2=DF2+CF2,
即(x+y)2=122+(y﹣x)2,
化简得:xy=36,即y=(x>0);
在平面直角坐标系中画出函数图象,如图所示.
【知识点】切线的性质
【解析】【分析】过D作DF垂直于CB,根据切线的性质及垂直定义得到∠ADF,∠DAB,∠DFB为直角,可得四边形ABFD为矩形,根据矩形的对边相等可得DF=AB,AD=BF,又DA与DE为圆O的切线,根据切线长定理得到DA=DE,同理得到CE=CB,可得CD=CE+DE=AD+CB,表示出CD,CF=CB﹣FB=CB﹣AD,表示出CF,再由DF=AB,由AB的长得出DF的长,在直角三角形CDF中,根据勾股定理列出关于x与y的关系式,整理后可得出y与x的反比例关系式,同时根据x表示线段长,可得x大于0,即反比例为第一象限的部分,画出图象即可.
25.如图,已知梯形ABCD中,AD∥BC,∠C=90°,以CD为直径的圆与AB相切,AB=6,求梯形ABCD的中位线长.
【答案】解:作OM⊥AB于M,连接OA、OB.
∵AD∥BC,∠C=90°,
∴∠D=180﹣∠C=90°,
∴以CD为直径的圆与AD、BC相切
∵以CD为直径的圆与AB相切,
∴AD=AM,BM=BC,
∴梯形ABCD的中位线长=(AD+BC)=AB=3.
故梯形ABCD的中位线长为3.
【知识点】切线的性质
【解析】【分析】作OM⊥AB于M,连接OA、OB,证得AD=AM,BM=BC,用梯形的中位线定理求中位线长为3.
26.(2020九上·南京期中)如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,求△PCD的周长.
【答案】解:∵PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,
∴PA+PB=m,PA PB=m﹣1,
∵PA、PB切⊙O于A、B两点,
∴PA=PB=,
即 =m﹣1,
即m2﹣4m+4=0,
解得:m=2,
∴PA=PB=1,
∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,
∴AD=ED,BC=EC,
∴△PCD的周长为:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=PA+PB=2.
【知识点】切线的性质
【解析】【分析】由PA、PB切⊙O于A、B两点,CD切⊙O于点E,根据切线长定理,可得PA=PB,又由PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,根据根与系数的关系,可求得PA与PB的长,又由CD切⊙O于点E,即可得△PCD的周长等于PA+PB.
27.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E.
(1)若PA=4,求△PED的周长;
(2)若∠P=40°,求∠AFB的度数.
【答案】解:(1)∵DA,DC都是圆O的切线,
∴DC=DA,
同理EC=EB,
∵P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B
∴PA=PB,
∴三角形PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=8,
即三角形PDE的周长是8;
(2)连接AB,
∵PA=PB,
∴∠PAB=∠PBA,
∵∠P=40°,
∴∠PAB=∠PBA=(180﹣40)=70°,
∵BF⊥PB,BF为圆直径
∴∠ABF=∠PBF=90°﹣70°=20°
∴∠AFB=90°﹣20°=70°.
答:(1)若PA=4,△PED的周长为8;
(2)若∠P=40°,∠AFB的度数为70°.
【知识点】切线的性质
【解析】【分析】(1)可通过切线长定理将相等的线段进行转换,得出三角形PDE的周长等于PA+PB的结论;
(2)连接AB,根据切线长定理求证PA=PB,再三角形内角和定理求出∠PAB和∠PBA的度数,然后再利用BF为圆直径即可求出∠AFB的度数.
28.如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,若PA=5cm,C是上的一个动点(点C与A、B两点不重合),过点C作⊙O的切线,分别交PA、PB于点D、E,求△PED的周长是多少?
【答案】解:∵PA、PB、DE是圆O的切线,切点分别是A、B、C,
∴AP=BP,DA=DC,CE=BE,
∴△PED的周长是:PD+DE+PE
=PD+DC+CE+PE
=PD+DA+PE+BE
=PA+PB
=2PA=10cm.
答:△PED的周长是10cm.
【知识点】切线的性质
【解析】【分析】根据切线长定理求出AP=BP,DA=DC,CE=BE,代入求出△PDE的周长为2PA,代入即可.
1 / 1浙教版数学九年级下册2.2切线长定理基础检测
一、单选题
1.P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是( )
A.4 B.8 C.12 D.不能确定
2.如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若AB=10,BC=4,则AD的长( )
A.4 B.5 C.6 D.7
3.已知P为⊙O外一点,PA,PB为⊙O的切线,A、B为切点,∠P=70°,C为⊙O上一个动点,且不与A、B重合,则∠BCA=( )
A.35°、145° B.110°、70°
C.55°、125° D.110°
4.如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=BC;③PB=PF;④AD2=4AB DC.其中正确的是( )
A.①②③④ B.只有①②
C.只有①②④ D.只有③④
5.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )
A.4 B.8 C. D.
6.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
A.35° B.45° C.60° D.70°
7.如图,⊙O是△ABC的内切圆,点D、E分别为边AC、BC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是( )
A.7 B.8 C.9 D.16
8.如图,AB、CD分别为两圆的弦,AC、BD为两圆的公切线且相交于P点.若PC=2,CD=3,
DB=6,则△PAB的周长为何( )
A.6 B.9 C.12 D.14
9.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于( )
A.13 B.12 C.11 D.10
10.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是 上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为( )
A.12 B.6 C.8 D.4
11.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为( )
A.20 B.30 C.40 D.50
12.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是( )
A.4 B.8 C.4 D.8
13.如图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=( )
A. B. C. D.
14.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是( )
A.PA=PB B.∠APO=20° C.∠OBP=70° D.∠AOP=70°
15.已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OM∥CD分别交BC与BP于点M、N.下列结论:
①S四边形ABCD= AB CD;
②AD=AB;
③AD=ON;
④AB为过O、C、D三点的圆的切线.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
16.如图,PA、PB分别切圆O于A、B,并与圆O的切线DC分别相交于C、D.已知△PCD的周长等于14cm,则PA= cm.
17.(2017·上思模拟)如图,AB,AC,BD是⊙O的切线,P,C,D为切点,如果AB=5,AC=3,则BD的长为 .
18.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若PA=10,则△PCD的周长=
19.如图,四边形ABCD的各边与⊙O分别相切于点E、F、G、H.若AB=4cm,AD=3cm,BC=3.6cm,则CD= cm.
20.如图,PA,PB是⊙O的切线,CD切⊙O于E,PA=6,则△PDC的周长为
三、解答题
21.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:
(1)PA的长;
(2)∠COD的度数.
22.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点.若AO=8cm,DO=6cm,求OE的长.
23.已知PA、PB、DE是⊙O的切线,切点分别为A、B、F,PO=13cm,⊙O的半径为5cm,求△PDE的周长.
24.如图:⊙O的直径AB=12,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C,设AD=X,BC=Y,求Y与X的函数关系式,并画出它的大致图象.
25.如图,已知梯形ABCD中,AD∥BC,∠C=90°,以CD为直径的圆与AB相切,AB=6,求梯形ABCD的中位线长.
26.(2020九上·南京期中)如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,求△PCD的周长.
27.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E.
(1)若PA=4,求△PED的周长;
(2)若∠P=40°,求∠AFB的度数.
28.如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,若PA=5cm,C是上的一个动点(点C与A、B两点不重合),过点C作⊙O的切线,分别交PA、PB于点D、E,求△PED的周长是多少?
答案解析部分
1.【答案】B
【知识点】切线的性质
【解析】【解答】解:根据题意画出图形,如图所示,
由直线DA和直线DC为圆O的切线,得到AD=DC,同理,由直线EC和直线EB为圆O的切线,得到EC=EB,
又直线PA和直线PB为圆O的切线,所以PA=PB=4,
则△PDE的周长C=PD+DE+PE=PD+DC+EC+PE
=PD+DA+EB+PE=PA+PB=4+4=8.
故选B
【分析】根据题意画出图形,由PA和PB为圆的切线,根据切线长定理得到PA与PB相等,同理得到DA与DC相等,EC与EB相等,然后表示出三角形PDE的三边和,等量代换后即可求出三角形PDE的周长.
2.【答案】C
【知识点】切线的性质
【解析】【解答】解:连接OC,OD,设⊙O的半径为r,
∵BC、CD、DA与半⊙O相切,
∴AD和AO的高为r,
∴AO=AD,
同理BO=BC,
∴AB=AO+BO=AD+BC,
又知AB=10,BC=4,
故知AD=6,
故选C.
【分析】连接OC,OD,设⊙O的半径为r,在△AOD和△BOC中,AD和AO,BO和BC上的高都为r,则AO=AD,BO=BC,从而得出BA=AD+BC.
3.【答案】C
【知识点】切线的性质
【解析】【解答】解:如图;连接OA、OB,则∠OAP=∠OBP=90°,
∴∠BOA=180°﹣∠P=110°,
∴∠AEB=∠AOB=55°;
∵四边形AEBF是⊙O的内接四边形,
∴∠AFB=180°﹣∠AEB=125°,
①当C点在优弧AB上运动时,∠BCA=∠AEB=55°;
②当C点在劣弧AB上运动时,∠BCA=∠AFB=125°;
故选C.
【分析】连接OA、OB,首先根据四边形内角和求出∠AOB的度数;由于C点的位置有两种情况,需分类讨论.
4.【答案】C
【知识点】切线的性质
【解析】【解答】解:∵BA,BE是圆的切线.
∴AB=BE,BO是△ABE顶角的平分线.
∴OB⊥AE
∵AD是圆的直径.
∴DE⊥AE
∴DE∥OF
故①正确;
∵CD=CE,AB=BE
∴AB+CD=BC
故②正确;
∵OD=OF
∴∠ODF=∠OFD=∠BFP
若PB=PF,则有∠PBF=∠BFP=∠ODF
而△ADP与△ABO不一定相似,故PB=PF不一定成了.
故③不正确;
连接OC.可以证明△OAB∽△CDO
∴
即:OA OD=AB CD
∴AD2=4AB DC
故④正确.
故正确的是:①②④.
故选C.
【分析】根据直径所对的圆周角是直角,以及切线长定理,相似三角形的性质即可作出判断.
5.【答案】B
【知识点】切线的性质
【解析】【解答】解:∵PA、PB都是⊙O的切线,
∴PA=PB,
又∵∠P=60°,
∴△PAB是等边三角形,即AB=PA=8,
故选B.
【分析】根据切线长定理知PA=PB,而∠P=60°,所以△PAB是等边三角形,由此求得弦AB的长.
6.【答案】D
【知识点】切线的性质
【解析】【解答】解:根据切线的性质定理得∠PAC=90°,
∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.
根据切线长定理得PA=PB,
所以∠PBA=∠PAB=55°,
所以∠P=70°.
故选D.
【分析】根据切线长定理得等腰△PAB,运用内角和定理求解.
7.【答案】A
【知识点】切线的性质
【解析】【解答】解:∵AB、AC、BC、DE都和⊙O相切,
∴BI=BG,CI=CH,DG=DF,EF=EH.
∴BG+CH=BI+CI=BC=9,
∴C△ADE=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=C△ABC﹣(BG+EH+BC)=25﹣2×9=7.
故选A.
【分析】根据切线长定理,可得BI=BG,CI=CH,DG=DF,EF=EH,则C△ADE=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=C△ABC﹣(BG+EH+BC),据此即可求解.
8.【答案】D
【知识点】切线的性质
【解析】【解答】解:根据切线长定理可得:PD=PC=2,DB=6
∴AP=BP=4
∵PA=PB,PC=PD,即=2
∵∠APB=∠DPC
∴△ABP∽△CDP
易得△CDP的周长是7,所以△PAB的周长是2×7=14.
故选D.
【分析】由切线长定理可求得PA=PB,PC=PD;根据PC、DB的长,即可求出PA、PB的长;易证得△APB∽△DPC,因此两三角形的周长比等于相似比,由此可求出△PAB的周长.
9.【答案】D
【知识点】切线的性质
【解析】【解答】解:∵AB∥CD,
∴∠ABC+∠BCD=180°,
∵CD、BC,AB分别与⊙O相切于G、F、E,
∴∠OBC=∠ABC,∠OCB=∠BCD,BE=BF,CG=CF,
∴∠OBC+∠OCB=90°,
∴∠BOC=90°,
∴BE+CG=10(cm).
故选D.
【分析】根据平行线的性质以及切线长定理,即可证明∠BOC=90°,再根据勾股定理即可求得BC的长,再结合切线长定理即可求解.
10.【答案】B
【知识点】切线的性质
【解析】【解答】解:∵PA,PB分别和⊙O切于A,B两点,
∴PA=PB,
∵DE是⊙O的切线,
∴DA=DC,EB=EC,
∵△PDE的周长为12,
即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,
∴PA=6.
故选B.
【分析】由PA,PB分别和⊙O切于A,B两点与DE是⊙O的切线,根据切线长定理,即可得PA=PB,DA=DC,EB=EC,又由△PDE的周长为12,易求得PA+PB=12,则可求得答案.
11.【答案】C
【知识点】切线的性质
【解析】【解答】解:据切线长定理有AD=AE,BE=BF,CD=CF;
则△ABC的周长=AB+BC+AC
=AB+BF+CF+AC
=AB+BE+AC+CD
=AD+AE=2AD
=40.
故选C.
【分析】根据切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,将△ABC的周长转化为切线长求解.
12.【答案】B
【知识点】切线的性质
【解析】【解答】解:∵PA,PB分别切⊙O于点A、B,
∴PA=PB,
又∠P=60°,
∴△APB是等边三角形,
∴AB=PA=8.
故选B.
【分析】根据切线长定理和等边三角形的判定方法,发现等边三角形即可求解.
13.【答案】D
【知识点】切线的性质
【解析】【解答】解:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F
∵AB,AE都为圆的切线
∴AE=AB
∵OB=OE,AO=AO
∴△ABO≌△AEO(SSS)
∴∠OAB=∠OAE
∴AO⊥BE
在直角△AOB里AO2=OB2+AB2
∵OB=1,AB=3
∴AO=
易证明△BOF∽△AOB
∴BO:AO=OF:OB
∴1:=OF:1
∴OF=
sin∠CBE= =
故选D.
【分析】取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F,则易证AO⊥BE,△BOF∽△AOB,则sin∠CBE=,求得OF的长即可求解.
14.【答案】C
【知识点】切线的性质
【解析】【解答】解:∵PA,PB是⊙O的切线,且∠APB=40°,
∴PA=PB,∠APO=∠BPO,∠A=∠B=90°,
∴∠OBP=∠OAP,
∴C是错误的.
故选C.
【分析】根据切线长定理得A,B是正确的;再根据切线的性质定理以及直角三角形的两个锐角互余得D是正确的;根据切线的性质定理得C错误.
15.【答案】C
【知识点】切线的性质
【解析】【解答】解:连接OD、AP,
∵DA、DP、BC分别是圆的切线,切点分别是A、P、B,
∴DA=DP,CP=CB,∠A=90°=∠B=∠DPO,
∴AD+BC=DP+CP=CD,
∴S四边形ABCD=(AD+BC) AB=AB CD,∴①正确;
∵AD=DP<OD<AB,∴②错误;
∵AB是圆的直径,
∴∠APB=90°,
∵DP=AD,AO=OP,
∴D、O在AP的垂直平分线上,
∴OD⊥AP,
∵∠DPO=∠APB=90°,
∴∠OPB=∠DPA=∠DOP,
∵OM∥CD,
∴∠POM=∠DPO=90°,
在△DPO和△NOP中
∠PON=∠DPO,OP=OP,∠DOP=∠OPN,
∴△DPO≌△NOP,
∴ON=DP=AD,∴③正确;
∵AP⊥OD,OA=OP,
∴∠AOD=∠POD,
同理∠BOC=∠POC,
∴∠DOC=×180°=90°,
∴△CDO的外接圆的直径是CD,
∵∠A=∠B=90°,
取CD的中点Q,连接OQ,
∵OA=OB,
∴AD∥OQ∥BC,
∴∠AOQ=90°,
∴④正确.
故选C.
【分析】连接OD、AP,根据切线长定理求出AD=DP,CP=BC,根据面积公式判断①即可;根据直角三角形斜边大于直角边即可判断②;证△DPO和△PON全等证出DP=ON即可判断③,证△DOC是直角三角形,取CD中点Q,证出OQ是半径,证梯形ABCD,推出∠AOQ=90°即可判断④.
16.【答案】7
【知识点】切线的性质
【解析】【解答】解:如图,设DC与⊙O的切点为E;
∵PA、PB分别是⊙O的切线,且切点为A、B;
∴PA=PB;
同理,可得:DE=DA,CE=CB;
则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=14(cm);
∴PA=PB=7cm,
故答案为:7.
【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.
17.【答案】2
【知识点】切线长定理
【解析】【解答】解:∵AC、AP为⊙O的切线,
∴AC=AP,
∵BP、BD为⊙O的切线,
∴BP=BD,
∴BD=PB=AB﹣AP=5﹣3=2.
故答案为:2.
【分析】本题考查了切线长定理,由于AB、AC、BD是⊙O的切线,运用切线长定理并利用等式的性质可得,AC=AP,BP=BD,求出BP的长即可求出BD的长.
18.【答案】20
【知识点】切线的性质
【解析】【解答】解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,
∴PB=PA=10,CA=CE,DB=DE,
∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=20.
故答案为:20.
【分析】由PA,PB切⊙O于A、B两点,CD切⊙O于点E,根据切线长定理可得:PB=PA=10,CA=CE,DB=DE,继而可得△PCD的周长=PA+PB.
19.【答案】2.6
【知识点】切线的性质
【解析】【解答】解:∵四边形ABCD的各边与⊙O分别相切于点E、F、G、H,
∴DG=DH,CG=CF,BF=BE,AE=AH,
则DC+AB=AD+BC
∵AB=4cm,AD=3cm,BC=3.6cm,
∴CD=3+3.6﹣4=2.6.
故答案为:2.6.
【分析】直接利用切线长定理求出DC+AB=AD+BC,进而得出答案.
20.【答案】12
【知识点】切线的性质
【解析】【解答】解:∵CA,CE都是圆O的切线,
∴CA=CE,
同理DE=DB,PA=PB,
∴三角形PDC的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12.
故答案为:12.
【分析】可通过切线长定理将相等的线段进行转换,得出三角形PDE的周长等于PA+PB即可得出答案.
21.【答案】解:(1)∵CA,CE都是圆O的切线,
∴CA=CE,
同理DE=DB,PA=PB,
∴三角形PDE的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,
即PA的长为6;
(2)∵∠P=60°,
∴∠PCE+∠PDE=120°,
∴∠ACD+∠CDB=360°﹣120°=240°,
∵CA,CE是圆O的切线,
∴∠OCE=∠OCA=∠ACD;
同理:∠ODE=∠CDB,
∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,
∴∠COD=180﹣120°=60°.
【知识点】切线的性质
【解析】【分析】(1)可通过切线长定理将相等的线段进行转换,得出三角形PDE的周长等于PA+PB的结论,即可求出PA的长;
(2)根据三角形的内角和求出∠ADC和∠BEC的度数和,然后根据切线长定理,得出∠EDO和∠DEO的度数和,再根据三角形的内角和求出∠DOE的度数.
22.【答案】解:∵AB∥CD,⊙O为内切圆,
∴∠OAD+∠ODA=90°,
∴∠AOD=90°,
∵AO=8cm,DO=6cm,
∴AD=10cm,
∵OE⊥AD,
∴AD OE=OD OA,
∴OE=4.8cm.
【知识点】切线的性质
【解析】【分析】由⊙O为内切圆,则AO、DO为角平分线,则∠AOD=90°,由勾股定理求得AD,再由切线的性质得OE⊥AD,由三角形的面积公式求出OE的长.
23.【答案】解:连接OA,则OA⊥PA.
在直角三角形APO中,PO=13cm,OA=5cm,
根据勾股定理,得
AP=12cm.
∵PA、PB、DE是⊙O的切线,切点分别为A、B、F,
∴PA=PB,DA=DF,EF=EB,
∴△PDE的周长=2PA=24cm.
【知识点】切线的性质
【解析】【分析】连接OA.根据切线的性质定理,得OA⊥PA.根据勾股定理,得PA=12,再根据切线长定理即可求得△PDE的周长.
24.【答案】解:过D作DF⊥CB,交CB于点F,
∵DA与DC都为圆O的切线,
∴DA=DE,
又CB与CE都为圆O的切线,
∴CB=CE,
又∠DAB=∠ABF=∠BFD=90°,
∴四边形ABFD为矩形,
∴DA=FB,DF=AB,
在直角三角形CDF中,
∵AD=x,BC=y,AB=12,
∴CD=CE+ED=DA+CB=x+y,DF=AB=12,CF=CB﹣FB=y﹣x,
根据勾股定理得:CD2=DF2+CF2,
即(x+y)2=122+(y﹣x)2,
化简得:xy=36,即y=(x>0);
在平面直角坐标系中画出函数图象,如图所示.
【知识点】切线的性质
【解析】【分析】过D作DF垂直于CB,根据切线的性质及垂直定义得到∠ADF,∠DAB,∠DFB为直角,可得四边形ABFD为矩形,根据矩形的对边相等可得DF=AB,AD=BF,又DA与DE为圆O的切线,根据切线长定理得到DA=DE,同理得到CE=CB,可得CD=CE+DE=AD+CB,表示出CD,CF=CB﹣FB=CB﹣AD,表示出CF,再由DF=AB,由AB的长得出DF的长,在直角三角形CDF中,根据勾股定理列出关于x与y的关系式,整理后可得出y与x的反比例关系式,同时根据x表示线段长,可得x大于0,即反比例为第一象限的部分,画出图象即可.
25.【答案】解:作OM⊥AB于M,连接OA、OB.
∵AD∥BC,∠C=90°,
∴∠D=180﹣∠C=90°,
∴以CD为直径的圆与AD、BC相切
∵以CD为直径的圆与AB相切,
∴AD=AM,BM=BC,
∴梯形ABCD的中位线长=(AD+BC)=AB=3.
故梯形ABCD的中位线长为3.
【知识点】切线的性质
【解析】【分析】作OM⊥AB于M,连接OA、OB,证得AD=AM,BM=BC,用梯形的中位线定理求中位线长为3.
26.【答案】解:∵PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,
∴PA+PB=m,PA PB=m﹣1,
∵PA、PB切⊙O于A、B两点,
∴PA=PB=,
即 =m﹣1,
即m2﹣4m+4=0,
解得:m=2,
∴PA=PB=1,
∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,
∴AD=ED,BC=EC,
∴△PCD的周长为:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=PA+PB=2.
【知识点】切线的性质
【解析】【分析】由PA、PB切⊙O于A、B两点,CD切⊙O于点E,根据切线长定理,可得PA=PB,又由PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,根据根与系数的关系,可求得PA与PB的长,又由CD切⊙O于点E,即可得△PCD的周长等于PA+PB.
27.【答案】解:(1)∵DA,DC都是圆O的切线,
∴DC=DA,
同理EC=EB,
∵P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B
∴PA=PB,
∴三角形PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=8,
即三角形PDE的周长是8;
(2)连接AB,
∵PA=PB,
∴∠PAB=∠PBA,
∵∠P=40°,
∴∠PAB=∠PBA=(180﹣40)=70°,
∵BF⊥PB,BF为圆直径
∴∠ABF=∠PBF=90°﹣70°=20°
∴∠AFB=90°﹣20°=70°.
答:(1)若PA=4,△PED的周长为8;
(2)若∠P=40°,∠AFB的度数为70°.
【知识点】切线的性质
【解析】【分析】(1)可通过切线长定理将相等的线段进行转换,得出三角形PDE的周长等于PA+PB的结论;
(2)连接AB,根据切线长定理求证PA=PB,再三角形内角和定理求出∠PAB和∠PBA的度数,然后再利用BF为圆直径即可求出∠AFB的度数.
28.【答案】解:∵PA、PB、DE是圆O的切线,切点分别是A、B、C,
∴AP=BP,DA=DC,CE=BE,
∴△PED的周长是:PD+DE+PE
=PD+DC+CE+PE
=PD+DA+PE+BE
=PA+PB
=2PA=10cm.
答:△PED的周长是10cm.
【知识点】切线的性质
【解析】【分析】根据切线长定理求出AP=BP,DA=DC,CE=BE,代入求出△PDE的周长为2PA,代入即可.
1 / 1