浙教版数学八年级下册5.3正方形基础检测

文档属性

名称 浙教版数学八年级下册5.3正方形基础检测
格式 zip
文件大小 376.0KB
资源类型 试卷
版本资源
科目 数学
更新时间 2016-04-18 09:20:34

文档简介

浙教版数学八年级下册5.3正方形基础检测
一、单选题
1.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是(  )
A.平行四边形 B.菱形 C.正方形 D.矩形
【答案】C
【知识点】正方形的判定
【解析】【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,
已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,
求证:四边形ABCD为正方形,
证明:∵OA=OC,OB=OD,
∴四边形ABCD为平行四边形,
∵AC⊥BD,
∴平行四边形ABCD为菱形,
∵AC=BD,
∴四边形ABCD为正方形.
故选C.
【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.
2.(2019九上·成都月考)四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是(  )
A.OA=OB=OC=OD,AC⊥BD B.AB∥CD,AC=BD
C.AD∥BC,∠A=∠C D.OA=OC,OB=OD,AB=BC
【答案】A
【知识点】正方形的判定
【解析】【解答】
解:A、∵OA=OB=OC=OD,
∴AC=BD,
∵AC⊥BD,
∴四边形ABCD是正方形,故本选项正确;
B、根据AB∥CD和AC=BD不能推出四边形ABCD是正方形,故本选项错误;
C、∵AD∥BC,
∴∠DAB+∠ABC=180°,∠ADC+∠DCB=180°,
∵∠DAB=∠DCB,
∴∠ABC=∠ADC,
∴只能推出四边形ABCD是平行四边形,故本选项错误;
D、∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
∵AB=BC,
∴只能推出四边形ABCD是菱形,故本选项错误;
故选A.
【分析】先想一下平行四边形、菱形、矩形、正方形的判定定理,再根据选项中的条件进行推理,看看能否推出四边形是正方形即可.
3.如图,点E在正方形ABCD对角线AC上,且EC=2.5AE,直角三角形FEG的两直角边EF,EG分别交BC,CD于M,N.若正方形边长是a,则重叠部分四边形EMCN的面积为(  )
A. B. C. D.
【答案】A
【知识点】正方形的性质
【解析】【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,如图所示:
∵四边形ABCD是正方形,
∴∠BCD=90°,
又∵∠EPM=∠EQN=90°,
∴∠PEQ=90°,
∴∠PEM+∠MEQ=90°,
∵△FEG是直角三角形,
∴∠NEF=∠NEQ+∠MEQ=90°,
∴∠PEM=∠NEQ,
∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,
∴EP=EQ,四边形PCQE是正方形,
在△EPM和△EQN中,

∴△EPM≌△EQN(ASA)
∴S△EQN=S△EPM,
∴四边形EMCN的面积等于正方形PCQE的面积,
∵正方形ABCD的边长为a,
∴AC==a,
∵EC=2.5AE,
∴EC=a,
∴正方形PCQE的面积=×(a)2=a2,
∴四边形EMCN的面积=a2.
故选:A.
【分析】过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.
4.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1 B1 C1 C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,若正方形ABCD算第一个正方形,则第2010个正方形的面积为(  )
A. B. C. D.
【答案】B
【知识点】正方形的性质
【解析】【解答】解:∵点A的坐标为(1,0),点D的坐标为(0,2),
∴OA=1,OD=2,
∵∠AOD=90°,
∴AB=AD==,∠ODA+∠OAD=90°,
∵四边形ABCD是正方形,
∴∠BAD=∠ABC=90°,S正方形ABCD=()2=5,
∴∠ABA1=90°,∠OAD+∠BAA1=90°,
∴∠ODA=∠BAA1,
∴△ABA1∽△DOA,
∴,
即 =,
∴BA1=,
∴CA1=,
∴正方形A1B1C1C的面积=()2=5×,…,第n个正方形的面积为5×()n,
∴第2010个正方形的面积为5×()2010;
故选:B.
【分析】先求出正方形ABCD的边长和面积,再求出第一个正方形A1B1C1C的面积,得出规律,根据规律即可求出第2010个正方形的面积.
5.下列性质中,正方形具有而菱形不一定具有的性质是(  )
A.四条边相等 B.对角线互相平分
C.对角线相等 D.对角线互相垂直
【答案】C
【知识点】正方形的性质
【解析】【解答】解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;
菱形的性质有:四条边相等;对角线互相垂直平分;
因此正方形具有而菱形不一定具有的性质是:对角线相等.
故选:C.
【分析】根据正方形的性质和菱形的性质,容易得出结论.
6.若一个正方形的面积为8,则这个正方形的边长为(  )
A.4 B.2 C. D.8
【答案】B
【知识点】正方形的性质
【解析】【解答】解:设正方形的边长为x,
根据题意得x2=8,
所以x=2.
故选B.
【分析】根据正方形的面积公式求解.
7.(2018八下·江海期末)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是(  )
A.2 B.2 C.2 D.
【答案】A
【知识点】正方形的性质
【解析】【解答】解:如图,连接BP,设点C到BE的距离为h,
则S△BCE=S△BCP+S△BEP,
即BE h=BC PQ+BE PR,
∵BE=BC,
∴h=PQ+PR,
∵正方形ABCD的边长为4,
∴h=4×=2.
故答案为:2.
【分析】连接BP,设点C到BE的距离为h,然后根据S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根据正方形的性质求出h即可.
8.(2019八下·东台月考)如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为(  )
A.2 B.4 C.4 D.2
【答案】A
【知识点】正方形的性质
【解析】【解答】解:在正方形ABCD中,OA⊥OD,∠OAD=45°,
∵PE⊥AC,PF⊥BD,
∴四边形OEPF为矩形,△APE是等腰直角三角形,
∴PF=OE,PE=BE,
∴PE+PF=BE+OE=OA,
∵AB=BC=4,
∴OA=AC=x4=2,
∴PE+PF=2,
故选A.
【分析】根据正方形的对角线互相垂直可得OA⊥OD,对角线平分一组对角可得∠OAD=45°,然后求出四边形OEPF为矩形,△APE是等腰直角三角形,再根据矩形的对边相等可得PF=OE,根据等腰直角三角形的性质可得PE=BE,从而得到PE+PF=OA,然后根据正方形的性质解答即可.
9.如图,在正方形ABCD的外侧,作等边三角形ADE,连接CE,与对角线BD交于F,则∠BFC为(  )
A.75° B.70° C.65° D.60°
【答案】D
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD是正方形,
∴∠ADC=90°,AD=DC,
又∵△ADE是正三角形,
∴CD=DE,∠ADE=60°,
∴△CDE是等腰三角形,∠CDE=90°+60°=150°,
∴∠ECD=∠DEC=15°,
∵∠BDC=45°,
∴∠CFD=180°﹣15°﹣45°=120°,
∴∠BFC=60°,
故选D
【分析】由于四边形ABCD是正方形,△ADE是正三角形,由此可以得到CD=DE,接着利用正方形和正三角形的内角的性质即可求解.
10.若正方形的对角线长为2,则这个正方形的面积为(  )
A.2 B.4 C. D.2
【答案】A
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD是正方形,
∴AO=BO=AC=1cm,∠AOB=90°,
由勾股定理得,AB=cm,
S正=()2=2cm2.
故选A.
【分析】根据正方形的性质,对角线平分、相等、垂直且平分每一组对角求解即可.
11.如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(,1),则点B的坐标为(  )
A.(﹣1,+1) B.(﹣1,1)
C.(1,+1) D.(﹣1,2)
【答案】A
【知识点】正方形的性质
【解析】【解答】解:作BG⊥y轴于G,作CE⊥x轴于E,BG与CE交于H;如图所示:
则∠BHC=∠CEO=90°,
∴∠HBC+∠BCH=90°,
∵C点坐标为(,1),
∴OE=,CE=1,
∵四边形ABCO是正方形,
∴BC=OC,∠BCO=90°,
∴∠BCH+∠OCE=90°,
∴∠HBC=∠OCE,
在△BCH和△COE中,,
∴△BCH≌△COE(AAS),
∴BH=CE=1,CH=OE=,
∴BG=﹣1,HE=+1,
∴点B的坐标为:(﹣1,+1);
故选:A.
【分析】作BG⊥y轴于G,作CE⊥x轴于E,BG与CE交于H;由AAS证明△BCH≌△COE,得出对应边相等BH=CE=1,CH=OE=,求出BG、HE即可.
12.如图,已知在正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,给出下列结论:
①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF.
其中结论正确的共有(  )
A.1个 B.2个 C.3个 D.4个
【答案】C
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等边三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正确).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正确),
∵BC=CD,
∴BC﹣BE=CD﹣DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正确).
设EC=x,由勾股定理,得
EF=x,CG=x,
AG=AEsin60°=EFsin60°=2×CGsin60°=x,
∴AC=,
∴AB=,
∴BE=﹣x=,
∴BE+DF=x﹣x≠x.(故④错误).
正确的有3个.
故选:C.
【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,再通过比较可以得出结论.
13.如图:A,D,E在同一条直线上,AD=3,DE=1,BD,DF分别为正方形ABCD,正方形DEFG的对角线,则三角形△BDF的面积为(  )
A.4.5 B.3 C.4 D.2
【答案】B
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD和四边形DEFG均为正方形,
∴BD=AD=3,DF=DE=,∠BDC=45°,∠GDF=45°,
∴∠BDF=90°,
∴S△BDF=DFBD=×x3=3,
故选B.
【分析】首先利用正方形的性质易得BD,DF,∠BDF=90°,利用直角三角形的面积公式得结果.
14.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB=(  )
A.10° B.15° C.30° D.150°
【答案】B
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
又∵△ADE是正三角形,
∴AE=AD,∠DAE=60°,
∴△ABE是等腰三角形,∠BAE=90°+60°=150°,
∴∠ABE=∠AEB=15°.
故选:B.
【分析】由于四边形ABCD是正方形,△ADE是正三角形,由此可以得到AB=AE,接着利用正方形和正三角形的内角的性质即可求解.
15.如图,正方形的边长为4cm,则图中阴影部分的面积为(  )cm2.
A.8 B.16 C.4 D.无法确定
【答案】A
【知识点】正方形的性质
【解析】【解答】解:根据题意得:S阴影=S正方形ABCD=×16=8cm2.
故选A.
【分析】把对角线AC下边的部分移到上面,补为直角三角形ADC,求出即可.
二、填空题
16.已知正方形ABCD的边长是4,对角线AC、BD交于点O,点E在线段AC上,且OE=,则∠ABE的度数    度.
【答案】15或75
【知识点】正方形的性质
【解析】【解答】解:∵正方形ABCD的边长是4,对角线AC、BD交于点O,点E在线段AC上,且OE=,
∴AC=BD==4,AC⊥BD,∠ABO=∠CBO=45°,
∴AO=CO=BO=DO=2,
∴tan∠BE′O===,tan∠BEO===,
∴∠BE′O=30°,∠BEO=30°,
∴∠ABE的度数为:30°+45°=75°,或45°﹣30°=15°.
故答案为:15或75.
【分析】根据正方形的性质首先得出AC=BD==4,AC⊥BD,∠ABO=∠CBO=45°,再利用锐角三角函数得出∠BE′O=30°,∠BEO=30°,即可得出∠ABE的度数.
17.如图,在平面直角坐标系中,点A(,0),点B(0,1),作第一个正方形OA1C1B1且点A1在OA上,点B1在OB上,点C1在AB上;作第二个正方形A1A2C2B2且点A2在A1A上,点B2在A1C2上,点C2在AB上…,如此下去,则点Cn的纵坐标为    .
【答案】
【知识点】正方形的性质
【解析】【解答】解:把点A(,0),点B(0,1)代入直线AB的解析式y=kx+b中,
可得:,
解得:,
所以直线AB的解析式是:,
设C1的横坐标为x,则纵坐标为y=,
因为正方形OA1C1B1可得,x=y,
即:,
解得:x==,
可得点C1的纵坐标为,
同理可得:点C2的纵坐标为,
由以上分析可得:点Cn的纵坐标为.
故答案为:.
【分析】根据正方形的性质及坐标作答。
18.(2017九上·巫山期中)如图,正方形ABCD的边长为4+2,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是    .
【答案】2
【知识点】正方形的性质
【解析】【解答】解:设EF=x,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
∴BD=AB=4+4,EF=BF=x,
∴BE=x,
∵∠BAE=22.5°,
∴∠DAE=90°﹣22.5°=67.5°,
∴∠AED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠DAE,
∴AD=ED,
∴BD=BE+ED=x+4+2=4+4,
解得:x=2,
即EF=2;
故答案为:2.
【分析】设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.
19.如图,边长分别为3和5的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则ET的长为   
【答案】4
【知识点】正方形的性质
【解析】【解答】解:∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,
∴∠ADB=∠CGE=45°,
∴∠GDT=180°﹣90°﹣45°=45°,
∴∠DTG=180°﹣∠GDT﹣∠CGE=180°﹣45°﹣45°=90°,
∴△DGT是等腰直角三角形,
∵两正方形的边长分别为3,5,
∴GE=,DG=5﹣3=2,
∴GT=×2=,
∴FT=4,
故答案为:4.
【分析】根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.
20.正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…,按如图所示的方式放置.点A1、A2、A3、…和点C1、C2、C3、…分别在直线y=x+1和x轴上,则第2015个正方形A2015B2015C2015C2014的边长为    .
【答案】
【知识点】正方形的性质
【解析】【解答】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,
∴OA1=1,OD=1,
∴∠ODA1=45°,
∴∠A2A1B1=45°,
∴A2B1=A1B1=1,
∴A2C1=2=21,
同理得:A3C2=4=22,…,
∴第2015个正方形A2015B2015C2015C2014的边长为:22014.
故答案为:22014.
【分析】根据直线解析式先求出OA1=1,再求出第一个正方形的边长为2,第三个正方形的边长为22,得出规律,即可求出第2015个正方形的边长.
三、解答题
21.已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.
(1)如图1,当P点在线段AB上时,PE+PF的值是否为定值?如果是,请求出它的值;如果不是,请加以说明.
(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.
【答案】解:(1)是定值,
∵四边形ABCD为正方形,
∴AC⊥BD.
∵PF⊥BD,
∴PF∥AC,
同理PE∥BD.
∴四边形PFOE为矩形,故PE=OF.
又∵∠PBF=45°,
∴PF=BF.
∴PE+PF=OF+FB=OB=acos45°=a.
(2)∵四边形ABCD为正方形,
∴AC⊥BD.
∵PF⊥BD,
∴PF∥AC,
同理PE∥BD.
∴四边形PFOE为矩形,故PE=OF.
又∵∠PBF=45°,
∴PF=BF.
∴PE﹣PF=OF﹣BF=OB=acos45°=a.
【知识点】正方形的性质
【解析】【分析】(1)因为ABCD是正方形,所以对角线互相垂直,又因为过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F,所以可证明四边形PFOE是矩形,从而求出解.
(2)因为四边形ABCD是正方形,所以对角线互相垂直,又因为过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F,所以可证明四边形PFOE是矩形,从而求出解.
22.(1)如图1,4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是2cm,正方形ABCD的4个顶点A、B、C、D分别在l1、l3、l4、l2上,求该正方形的面积;
(2)如图2,把一张矩形卡片ABCD放在每格宽度为18mm的横格纸中,恰好四个顶点都在横格线上,已知∠1=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
【答案】解:(1)如图1,作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵四边形ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,在△ADE和△DCF,,∴△ADE≌△DCF(AAS),∴CF=DE=2.∵DF=4,∴CD2=22+42=20,即正方形ABCD的面积为20cm2;(2)如图2,作BE⊥l于点E,DF⊥l于点F.∵∠1+∠DAF=180°﹣∠BAD=180°﹣90°=90°,∠ADF+∠DAF=90°,∴∠ADF=∠1=36°,根据题意,得BE=36mm,DF=72mm.在Rt△ABE中,sin∠1=,∴AB==60mm,在Rt△ADF中,cos∠ADF=,∴AD=mm=90mm.∴矩形ABCD的周长=2(60+90)=300mm.
【知识点】正方形的性质;锐角三角函数的定义
【解析】【分析】(1)过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=2,DF=4.根据勾股定理可求CD2得正方形的面积;
(2)作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.
23.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图放置,使点E在BC上,取DF的中点G,连结EG、CG.
(1)请添加一条辅助线,构造一个和△FEG全等的三角形,并证明它们全等.
(2)探索EG、CG的数量关系和位置关系,并证明.
【答案】解:(1)延长EG交CD于点H,如图,则△DHG≌△FEG.证明如下:
∵∠BEF=90°,
∴EF⊥BC,
而CD⊥BC,
∴EF∥CD,
∴∠1=∠2,
∵点G为DF的中点,
∴DG=FG,
在△DHG和△FEG中,

∴△DHG≌△FEG(ASA);
(2)EG=CG,EG⊥CG.证明如下:
∵△DHG≌△FEG,
∴EF=DH,EG=HG,
∵BE=EF,
∴BE=DH,
∵CB=CD,
∴CD﹣DH=CB﹣BE,即CH=CE,
∴△CHE为等腰直角三角形,
∵EG=GH,
∴CG⊥EH,CG=EG=GH,
即EG=CG,EG⊥CG.
【知识点】正方形的性质
【解析】【分析】(1)延长EG交CD于点H,如图,先证明EF∥CD,则∠1=∠2,再由点G为DF的中点得到DG=FG,然后利用“ASA”判断△DHG≌△FEG;
(2)由△DHG≌△FEG得到EF=DH,EG=HG,而BE=EF,所以BE=DH,根据正方形的性质得CB=CD,则CH=CE,于是可判断△CHE为等腰直角三角形,然后根据等腰直角三角形的性质得到CG⊥EH,CG=EG=GH,即EG=CG,EG⊥CG.
24.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,联结BE、DF,DF交对角线AC于点G,且DE=DG;
(1)求证:AE=CG;
(2)求证:BE∥DF.
【答案】证明:(1)∵DE=DG,
∴∠DEG=∠DGE,
∴∠AED=∠CGD,
∵四边形ABCD是正方形,
∴AD=CD=BC,∠DAC=∠BCE=∠DCA=45°,
在△ADE和△CDG中,

∴△ADE≌△CDG(AAS),
∴AE=CG;
(2)在△BCE和△DCE中,

∴△BCE≌△DCE (SAS),
∴∠BEC=∠DEG,
∴∠BEC=∠DGE,
∴BE∥DF.
【知识点】正方形的性质
【解析】【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;
(2)先证明△BCE≌△DCE,得出对应角相等∠BEC=∠DEG,得出∠BEC=∠DGE,即可证出平行线.
25.如图,P为正方形ABCD对角线AC上一动点,EF⊥AC且交AD于E,交CD的延长线于点G,连接CE和AG.
(1)求证:△ADG≌△CDE;
(2)当CE平分∠ACD时,求tan∠AGD.
【答案】(1)证明:在正方形ABCD中,AD=CD,∠BAD=∠ADC=90°,
∴∠ADG=180°﹣∠ADC=90°,
∴∠CDE=∠ADG,
又∵EF⊥AC,
∴∠AEF=90°﹣∠CAD=45°,
∴∠DEG=∠AEF=45°,
在Rt△EDG中,∠DGE=90°﹣∠DEG=45°,
∴∠DGE=∠DEG,
∴ED=GD
在△ADG与△CDE中,

∴△ADG≌△CDE(SAS);
(2)∵CE平分∠ACD,
∴∠ACE=∠ECG,
又∵EF⊥AC,AD⊥CD,
∴ED=EF,
∴EF=AF=DE=DG,
设DG为k,则ED=k,AE=k,AD=AE+ED=(+1)k,
tan∠AGD==+1
【知识点】正方形的性质
【解析】【分析】(1)根据正方形的性质和全等三角形证明△ADG与△CDE全等即可;
(2)设DG为k,利用三角函数的正切值解答即可.
26.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,联结BE、DF,DF交对角线于点P,且DE=DP.
(1)求证:AE=CP;
(2)求证:BE∥DF.
【答案】证明:(1)∵DE=DP,∴∠DEP=∠DPE,∴∠AED=∠CPD,∵四边形ABCD是正方形,∴AD=CD=BC,∠DAC=∠BCE=∠DCA=45°,在△ADE和△CDP中,,∴△ADE≌△CDP(AAS),∴AE=CP;(2)在△BCE和△DCE中,,∴△BCE≌△DCE (SAS),∴∠BEC=∠DEP,∴∠BEC=∠DPE,∴BE∥DF.
【知识点】正方形的性质
【解析】【分析】(1)先证∠AED=∠CPD,再证明△ADE≌△CDP,根据全等三角形的对应边相等即可得出结论;
(2)先证明△BCE≌△DCE,得出对应角相等∠BEC=∠DEP,得出∠BEC=∠DPE,即可证出平行线.
27.(1)如图1,直线a∥b∥c∥d,且a与b,c与d之间的距离均为1,b与c之间的距离为2,现将正方形ABCD如图放置,使其四个顶点分别在四条直线上,求正方形的边长;
(2)在(1)的条件下,探究:将正方形ABCD改为菱形ABCD,如图2,当∠DCB=120°时,求菱形的边长.
【答案】解:(1)如图1,过B,D分别作直线d的垂线,垂足分别为P,Q,
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠BCD=90°,
∴∠PCB+∠QCD=90°,
∵∠PBC+∠PCB=90°,
∴∠PBC=∠QCD,
在△CBP和△CDQ中
∴△CBP≌△CDQ(AAS),
∴CP=DQ=1,
∵BP=3,
∴;
(2)如图2,过B,D分别作直线d的垂线,垂足分别为M,N,作∠BPC=∠DQC=120°,P,Q在直线d上,
∵∠DCB=120°,
∴∠PCB+∠DCQ=60°,
∵∠PBC+∠PCB=60°,
∴∠PBC=∠DCQ,
在△BPC和△CQD中
∴△BPC≌△DQC,
∴PC=DQ,PB=CQ,
∵∠BPC=∠DQC=120°,
∴∠BPM=∠DQN=60°,
∴sin∠BPM=,sin∠DQN=,
∵BM=3,DN=1,
∴PB=2,DQ=,
∴PC=DQ=,
∵∠BPM=60°,
∴∠PBM=30°,
∵在Rt△PBM中,PM=PB=,
∴MC=PC+PM=,
∴在Rt△PBM中,BC===.
【知识点】正方形的性质
【解析】【分析】(1)如图1,过B,D分别作直线d的垂线,垂足分别为P,Q,通过证得△CBP≌△CDQ,得出CP=DQ=1,然后根据勾股定理即可求得;
(2)如图2,过B,D分别作直线d的垂线,垂足分别为M,N,作∠BPC=∠DQC=120°,P,Q在直线d上,通过证得△BPC≌△DQC证得PC=DQ,通过解直角三角形求得PM,DQ,进而求得MC,然后根据勾股定理即可求得.
28.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.
(1)求证:AE=CG;
(2)试判断BE和DF的位置关系,并说明理由.
【答案】解:(1)证明:在正方形ABCD中,
∵AD=CD,
∴∠DAE=∠DCG,
∵DE=DG,
∴∠DEG=∠DGE,
∴∠AED=∠CGD.
在△AED和△CGD中,
∴△AED≌△CGD(AAS),
∴AE=CG.
(2)解法一:BE∥DF,理由如下:
在正方形ABCD中,AB∥CD,
∴∠BAE=∠DCG.
在△AEB和△CGD中,
∴△AEB≌△CGD(SAS),
∴∠AEB=∠CGD.
∵∠CGD=∠EGF,
∴∠AEB=∠EGF,
∴BE∥DF.
解法二:BE∥DF,理由如下:
在正方形ABCD中,
∵AD∥FC,
∴=.
∵CG=AE,
∴AG=CE.
又∵在正方形ABCD中,AD=CB,
∴=.
又∵∠GCF=∠ECB,
∴△CGF∽△CEB,
∴∠CGF=∠CEB,
∴BE∥DF.
【知识点】正方形的性质
【解析】【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;
(2)先证明△AEB≌△CGD,得出对应角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可证出平行线.
1 / 1浙教版数学八年级下册5.3正方形基础检测
一、单选题
1.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是(  )
A.平行四边形 B.菱形 C.正方形 D.矩形
2.(2019九上·成都月考)四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是(  )
A.OA=OB=OC=OD,AC⊥BD B.AB∥CD,AC=BD
C.AD∥BC,∠A=∠C D.OA=OC,OB=OD,AB=BC
3.如图,点E在正方形ABCD对角线AC上,且EC=2.5AE,直角三角形FEG的两直角边EF,EG分别交BC,CD于M,N.若正方形边长是a,则重叠部分四边形EMCN的面积为(  )
A. B. C. D.
4.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1 B1 C1 C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,若正方形ABCD算第一个正方形,则第2010个正方形的面积为(  )
A. B. C. D.
5.下列性质中,正方形具有而菱形不一定具有的性质是(  )
A.四条边相等 B.对角线互相平分
C.对角线相等 D.对角线互相垂直
6.若一个正方形的面积为8,则这个正方形的边长为(  )
A.4 B.2 C. D.8
7.(2018八下·江海期末)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是(  )
A.2 B.2 C.2 D.
8.(2019八下·东台月考)如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为(  )
A.2 B.4 C.4 D.2
9.如图,在正方形ABCD的外侧,作等边三角形ADE,连接CE,与对角线BD交于F,则∠BFC为(  )
A.75° B.70° C.65° D.60°
10.若正方形的对角线长为2,则这个正方形的面积为(  )
A.2 B.4 C. D.2
11.如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(,1),则点B的坐标为(  )
A.(﹣1,+1) B.(﹣1,1)
C.(1,+1) D.(﹣1,2)
12.如图,已知在正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,给出下列结论:
①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF.
其中结论正确的共有(  )
A.1个 B.2个 C.3个 D.4个
13.如图:A,D,E在同一条直线上,AD=3,DE=1,BD,DF分别为正方形ABCD,正方形DEFG的对角线,则三角形△BDF的面积为(  )
A.4.5 B.3 C.4 D.2
14.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB=(  )
A.10° B.15° C.30° D.150°
15.如图,正方形的边长为4cm,则图中阴影部分的面积为(  )cm2.
A.8 B.16 C.4 D.无法确定
二、填空题
16.已知正方形ABCD的边长是4,对角线AC、BD交于点O,点E在线段AC上,且OE=,则∠ABE的度数    度.
17.如图,在平面直角坐标系中,点A(,0),点B(0,1),作第一个正方形OA1C1B1且点A1在OA上,点B1在OB上,点C1在AB上;作第二个正方形A1A2C2B2且点A2在A1A上,点B2在A1C2上,点C2在AB上…,如此下去,则点Cn的纵坐标为    .
18.(2017九上·巫山期中)如图,正方形ABCD的边长为4+2,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是    .
19.如图,边长分别为3和5的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则ET的长为   
20.正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…,按如图所示的方式放置.点A1、A2、A3、…和点C1、C2、C3、…分别在直线y=x+1和x轴上,则第2015个正方形A2015B2015C2015C2014的边长为    .
三、解答题
21.已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.
(1)如图1,当P点在线段AB上时,PE+PF的值是否为定值?如果是,请求出它的值;如果不是,请加以说明.
(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.
22.(1)如图1,4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是2cm,正方形ABCD的4个顶点A、B、C、D分别在l1、l3、l4、l2上,求该正方形的面积;
(2)如图2,把一张矩形卡片ABCD放在每格宽度为18mm的横格纸中,恰好四个顶点都在横格线上,已知∠1=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
23.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图放置,使点E在BC上,取DF的中点G,连结EG、CG.
(1)请添加一条辅助线,构造一个和△FEG全等的三角形,并证明它们全等.
(2)探索EG、CG的数量关系和位置关系,并证明.
24.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,联结BE、DF,DF交对角线AC于点G,且DE=DG;
(1)求证:AE=CG;
(2)求证:BE∥DF.
25.如图,P为正方形ABCD对角线AC上一动点,EF⊥AC且交AD于E,交CD的延长线于点G,连接CE和AG.
(1)求证:△ADG≌△CDE;
(2)当CE平分∠ACD时,求tan∠AGD.
26.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,联结BE、DF,DF交对角线于点P,且DE=DP.
(1)求证:AE=CP;
(2)求证:BE∥DF.
27.(1)如图1,直线a∥b∥c∥d,且a与b,c与d之间的距离均为1,b与c之间的距离为2,现将正方形ABCD如图放置,使其四个顶点分别在四条直线上,求正方形的边长;
(2)在(1)的条件下,探究:将正方形ABCD改为菱形ABCD,如图2,当∠DCB=120°时,求菱形的边长.
28.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.
(1)求证:AE=CG;
(2)试判断BE和DF的位置关系,并说明理由.
答案解析部分
1.【答案】C
【知识点】正方形的判定
【解析】【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,
已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,
求证:四边形ABCD为正方形,
证明:∵OA=OC,OB=OD,
∴四边形ABCD为平行四边形,
∵AC⊥BD,
∴平行四边形ABCD为菱形,
∵AC=BD,
∴四边形ABCD为正方形.
故选C.
【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.
2.【答案】A
【知识点】正方形的判定
【解析】【解答】
解:A、∵OA=OB=OC=OD,
∴AC=BD,
∵AC⊥BD,
∴四边形ABCD是正方形,故本选项正确;
B、根据AB∥CD和AC=BD不能推出四边形ABCD是正方形,故本选项错误;
C、∵AD∥BC,
∴∠DAB+∠ABC=180°,∠ADC+∠DCB=180°,
∵∠DAB=∠DCB,
∴∠ABC=∠ADC,
∴只能推出四边形ABCD是平行四边形,故本选项错误;
D、∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
∵AB=BC,
∴只能推出四边形ABCD是菱形,故本选项错误;
故选A.
【分析】先想一下平行四边形、菱形、矩形、正方形的判定定理,再根据选项中的条件进行推理,看看能否推出四边形是正方形即可.
3.【答案】A
【知识点】正方形的性质
【解析】【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,如图所示:
∵四边形ABCD是正方形,
∴∠BCD=90°,
又∵∠EPM=∠EQN=90°,
∴∠PEQ=90°,
∴∠PEM+∠MEQ=90°,
∵△FEG是直角三角形,
∴∠NEF=∠NEQ+∠MEQ=90°,
∴∠PEM=∠NEQ,
∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,
∴EP=EQ,四边形PCQE是正方形,
在△EPM和△EQN中,

∴△EPM≌△EQN(ASA)
∴S△EQN=S△EPM,
∴四边形EMCN的面积等于正方形PCQE的面积,
∵正方形ABCD的边长为a,
∴AC==a,
∵EC=2.5AE,
∴EC=a,
∴正方形PCQE的面积=×(a)2=a2,
∴四边形EMCN的面积=a2.
故选:A.
【分析】过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.
4.【答案】B
【知识点】正方形的性质
【解析】【解答】解:∵点A的坐标为(1,0),点D的坐标为(0,2),
∴OA=1,OD=2,
∵∠AOD=90°,
∴AB=AD==,∠ODA+∠OAD=90°,
∵四边形ABCD是正方形,
∴∠BAD=∠ABC=90°,S正方形ABCD=()2=5,
∴∠ABA1=90°,∠OAD+∠BAA1=90°,
∴∠ODA=∠BAA1,
∴△ABA1∽△DOA,
∴,
即 =,
∴BA1=,
∴CA1=,
∴正方形A1B1C1C的面积=()2=5×,…,第n个正方形的面积为5×()n,
∴第2010个正方形的面积为5×()2010;
故选:B.
【分析】先求出正方形ABCD的边长和面积,再求出第一个正方形A1B1C1C的面积,得出规律,根据规律即可求出第2010个正方形的面积.
5.【答案】C
【知识点】正方形的性质
【解析】【解答】解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;
菱形的性质有:四条边相等;对角线互相垂直平分;
因此正方形具有而菱形不一定具有的性质是:对角线相等.
故选:C.
【分析】根据正方形的性质和菱形的性质,容易得出结论.
6.【答案】B
【知识点】正方形的性质
【解析】【解答】解:设正方形的边长为x,
根据题意得x2=8,
所以x=2.
故选B.
【分析】根据正方形的面积公式求解.
7.【答案】A
【知识点】正方形的性质
【解析】【解答】解:如图,连接BP,设点C到BE的距离为h,
则S△BCE=S△BCP+S△BEP,
即BE h=BC PQ+BE PR,
∵BE=BC,
∴h=PQ+PR,
∵正方形ABCD的边长为4,
∴h=4×=2.
故答案为:2.
【分析】连接BP,设点C到BE的距离为h,然后根据S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根据正方形的性质求出h即可.
8.【答案】A
【知识点】正方形的性质
【解析】【解答】解:在正方形ABCD中,OA⊥OD,∠OAD=45°,
∵PE⊥AC,PF⊥BD,
∴四边形OEPF为矩形,△APE是等腰直角三角形,
∴PF=OE,PE=BE,
∴PE+PF=BE+OE=OA,
∵AB=BC=4,
∴OA=AC=x4=2,
∴PE+PF=2,
故选A.
【分析】根据正方形的对角线互相垂直可得OA⊥OD,对角线平分一组对角可得∠OAD=45°,然后求出四边形OEPF为矩形,△APE是等腰直角三角形,再根据矩形的对边相等可得PF=OE,根据等腰直角三角形的性质可得PE=BE,从而得到PE+PF=OA,然后根据正方形的性质解答即可.
9.【答案】D
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD是正方形,
∴∠ADC=90°,AD=DC,
又∵△ADE是正三角形,
∴CD=DE,∠ADE=60°,
∴△CDE是等腰三角形,∠CDE=90°+60°=150°,
∴∠ECD=∠DEC=15°,
∵∠BDC=45°,
∴∠CFD=180°﹣15°﹣45°=120°,
∴∠BFC=60°,
故选D
【分析】由于四边形ABCD是正方形,△ADE是正三角形,由此可以得到CD=DE,接着利用正方形和正三角形的内角的性质即可求解.
10.【答案】A
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD是正方形,
∴AO=BO=AC=1cm,∠AOB=90°,
由勾股定理得,AB=cm,
S正=()2=2cm2.
故选A.
【分析】根据正方形的性质,对角线平分、相等、垂直且平分每一组对角求解即可.
11.【答案】A
【知识点】正方形的性质
【解析】【解答】解:作BG⊥y轴于G,作CE⊥x轴于E,BG与CE交于H;如图所示:
则∠BHC=∠CEO=90°,
∴∠HBC+∠BCH=90°,
∵C点坐标为(,1),
∴OE=,CE=1,
∵四边形ABCO是正方形,
∴BC=OC,∠BCO=90°,
∴∠BCH+∠OCE=90°,
∴∠HBC=∠OCE,
在△BCH和△COE中,,
∴△BCH≌△COE(AAS),
∴BH=CE=1,CH=OE=,
∴BG=﹣1,HE=+1,
∴点B的坐标为:(﹣1,+1);
故选:A.
【分析】作BG⊥y轴于G,作CE⊥x轴于E,BG与CE交于H;由AAS证明△BCH≌△COE,得出对应边相等BH=CE=1,CH=OE=,求出BG、HE即可.
12.【答案】C
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等边三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正确).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正确),
∵BC=CD,
∴BC﹣BE=CD﹣DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正确).
设EC=x,由勾股定理,得
EF=x,CG=x,
AG=AEsin60°=EFsin60°=2×CGsin60°=x,
∴AC=,
∴AB=,
∴BE=﹣x=,
∴BE+DF=x﹣x≠x.(故④错误).
正确的有3个.
故选:C.
【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,再通过比较可以得出结论.
13.【答案】B
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD和四边形DEFG均为正方形,
∴BD=AD=3,DF=DE=,∠BDC=45°,∠GDF=45°,
∴∠BDF=90°,
∴S△BDF=DFBD=×x3=3,
故选B.
【分析】首先利用正方形的性质易得BD,DF,∠BDF=90°,利用直角三角形的面积公式得结果.
14.【答案】B
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
又∵△ADE是正三角形,
∴AE=AD,∠DAE=60°,
∴△ABE是等腰三角形,∠BAE=90°+60°=150°,
∴∠ABE=∠AEB=15°.
故选:B.
【分析】由于四边形ABCD是正方形,△ADE是正三角形,由此可以得到AB=AE,接着利用正方形和正三角形的内角的性质即可求解.
15.【答案】A
【知识点】正方形的性质
【解析】【解答】解:根据题意得:S阴影=S正方形ABCD=×16=8cm2.
故选A.
【分析】把对角线AC下边的部分移到上面,补为直角三角形ADC,求出即可.
16.【答案】15或75
【知识点】正方形的性质
【解析】【解答】解:∵正方形ABCD的边长是4,对角线AC、BD交于点O,点E在线段AC上,且OE=,
∴AC=BD==4,AC⊥BD,∠ABO=∠CBO=45°,
∴AO=CO=BO=DO=2,
∴tan∠BE′O===,tan∠BEO===,
∴∠BE′O=30°,∠BEO=30°,
∴∠ABE的度数为:30°+45°=75°,或45°﹣30°=15°.
故答案为:15或75.
【分析】根据正方形的性质首先得出AC=BD==4,AC⊥BD,∠ABO=∠CBO=45°,再利用锐角三角函数得出∠BE′O=30°,∠BEO=30°,即可得出∠ABE的度数.
17.【答案】
【知识点】正方形的性质
【解析】【解答】解:把点A(,0),点B(0,1)代入直线AB的解析式y=kx+b中,
可得:,
解得:,
所以直线AB的解析式是:,
设C1的横坐标为x,则纵坐标为y=,
因为正方形OA1C1B1可得,x=y,
即:,
解得:x==,
可得点C1的纵坐标为,
同理可得:点C2的纵坐标为,
由以上分析可得:点Cn的纵坐标为.
故答案为:.
【分析】根据正方形的性质及坐标作答。
18.【答案】2
【知识点】正方形的性质
【解析】【解答】解:设EF=x,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
∴BD=AB=4+4,EF=BF=x,
∴BE=x,
∵∠BAE=22.5°,
∴∠DAE=90°﹣22.5°=67.5°,
∴∠AED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠DAE,
∴AD=ED,
∴BD=BE+ED=x+4+2=4+4,
解得:x=2,
即EF=2;
故答案为:2.
【分析】设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.
19.【答案】4
【知识点】正方形的性质
【解析】【解答】解:∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,
∴∠ADB=∠CGE=45°,
∴∠GDT=180°﹣90°﹣45°=45°,
∴∠DTG=180°﹣∠GDT﹣∠CGE=180°﹣45°﹣45°=90°,
∴△DGT是等腰直角三角形,
∵两正方形的边长分别为3,5,
∴GE=,DG=5﹣3=2,
∴GT=×2=,
∴FT=4,
故答案为:4.
【分析】根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.
20.【答案】
【知识点】正方形的性质
【解析】【解答】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,
∴OA1=1,OD=1,
∴∠ODA1=45°,
∴∠A2A1B1=45°,
∴A2B1=A1B1=1,
∴A2C1=2=21,
同理得:A3C2=4=22,…,
∴第2015个正方形A2015B2015C2015C2014的边长为:22014.
故答案为:22014.
【分析】根据直线解析式先求出OA1=1,再求出第一个正方形的边长为2,第三个正方形的边长为22,得出规律,即可求出第2015个正方形的边长.
21.【答案】解:(1)是定值,
∵四边形ABCD为正方形,
∴AC⊥BD.
∵PF⊥BD,
∴PF∥AC,
同理PE∥BD.
∴四边形PFOE为矩形,故PE=OF.
又∵∠PBF=45°,
∴PF=BF.
∴PE+PF=OF+FB=OB=acos45°=a.
(2)∵四边形ABCD为正方形,
∴AC⊥BD.
∵PF⊥BD,
∴PF∥AC,
同理PE∥BD.
∴四边形PFOE为矩形,故PE=OF.
又∵∠PBF=45°,
∴PF=BF.
∴PE﹣PF=OF﹣BF=OB=acos45°=a.
【知识点】正方形的性质
【解析】【分析】(1)因为ABCD是正方形,所以对角线互相垂直,又因为过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F,所以可证明四边形PFOE是矩形,从而求出解.
(2)因为四边形ABCD是正方形,所以对角线互相垂直,又因为过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F,所以可证明四边形PFOE是矩形,从而求出解.
22.【答案】解:(1)如图1,作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵四边形ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,在△ADE和△DCF,,∴△ADE≌△DCF(AAS),∴CF=DE=2.∵DF=4,∴CD2=22+42=20,即正方形ABCD的面积为20cm2;(2)如图2,作BE⊥l于点E,DF⊥l于点F.∵∠1+∠DAF=180°﹣∠BAD=180°﹣90°=90°,∠ADF+∠DAF=90°,∴∠ADF=∠1=36°,根据题意,得BE=36mm,DF=72mm.在Rt△ABE中,sin∠1=,∴AB==60mm,在Rt△ADF中,cos∠ADF=,∴AD=mm=90mm.∴矩形ABCD的周长=2(60+90)=300mm.
【知识点】正方形的性质;锐角三角函数的定义
【解析】【分析】(1)过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=2,DF=4.根据勾股定理可求CD2得正方形的面积;
(2)作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.
23.【答案】解:(1)延长EG交CD于点H,如图,则△DHG≌△FEG.证明如下:
∵∠BEF=90°,
∴EF⊥BC,
而CD⊥BC,
∴EF∥CD,
∴∠1=∠2,
∵点G为DF的中点,
∴DG=FG,
在△DHG和△FEG中,

∴△DHG≌△FEG(ASA);
(2)EG=CG,EG⊥CG.证明如下:
∵△DHG≌△FEG,
∴EF=DH,EG=HG,
∵BE=EF,
∴BE=DH,
∵CB=CD,
∴CD﹣DH=CB﹣BE,即CH=CE,
∴△CHE为等腰直角三角形,
∵EG=GH,
∴CG⊥EH,CG=EG=GH,
即EG=CG,EG⊥CG.
【知识点】正方形的性质
【解析】【分析】(1)延长EG交CD于点H,如图,先证明EF∥CD,则∠1=∠2,再由点G为DF的中点得到DG=FG,然后利用“ASA”判断△DHG≌△FEG;
(2)由△DHG≌△FEG得到EF=DH,EG=HG,而BE=EF,所以BE=DH,根据正方形的性质得CB=CD,则CH=CE,于是可判断△CHE为等腰直角三角形,然后根据等腰直角三角形的性质得到CG⊥EH,CG=EG=GH,即EG=CG,EG⊥CG.
24.【答案】证明:(1)∵DE=DG,
∴∠DEG=∠DGE,
∴∠AED=∠CGD,
∵四边形ABCD是正方形,
∴AD=CD=BC,∠DAC=∠BCE=∠DCA=45°,
在△ADE和△CDG中,

∴△ADE≌△CDG(AAS),
∴AE=CG;
(2)在△BCE和△DCE中,

∴△BCE≌△DCE (SAS),
∴∠BEC=∠DEG,
∴∠BEC=∠DGE,
∴BE∥DF.
【知识点】正方形的性质
【解析】【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;
(2)先证明△BCE≌△DCE,得出对应角相等∠BEC=∠DEG,得出∠BEC=∠DGE,即可证出平行线.
25.【答案】(1)证明:在正方形ABCD中,AD=CD,∠BAD=∠ADC=90°,
∴∠ADG=180°﹣∠ADC=90°,
∴∠CDE=∠ADG,
又∵EF⊥AC,
∴∠AEF=90°﹣∠CAD=45°,
∴∠DEG=∠AEF=45°,
在Rt△EDG中,∠DGE=90°﹣∠DEG=45°,
∴∠DGE=∠DEG,
∴ED=GD
在△ADG与△CDE中,

∴△ADG≌△CDE(SAS);
(2)∵CE平分∠ACD,
∴∠ACE=∠ECG,
又∵EF⊥AC,AD⊥CD,
∴ED=EF,
∴EF=AF=DE=DG,
设DG为k,则ED=k,AE=k,AD=AE+ED=(+1)k,
tan∠AGD==+1
【知识点】正方形的性质
【解析】【分析】(1)根据正方形的性质和全等三角形证明△ADG与△CDE全等即可;
(2)设DG为k,利用三角函数的正切值解答即可.
26.【答案】证明:(1)∵DE=DP,∴∠DEP=∠DPE,∴∠AED=∠CPD,∵四边形ABCD是正方形,∴AD=CD=BC,∠DAC=∠BCE=∠DCA=45°,在△ADE和△CDP中,,∴△ADE≌△CDP(AAS),∴AE=CP;(2)在△BCE和△DCE中,,∴△BCE≌△DCE (SAS),∴∠BEC=∠DEP,∴∠BEC=∠DPE,∴BE∥DF.
【知识点】正方形的性质
【解析】【分析】(1)先证∠AED=∠CPD,再证明△ADE≌△CDP,根据全等三角形的对应边相等即可得出结论;
(2)先证明△BCE≌△DCE,得出对应角相等∠BEC=∠DEP,得出∠BEC=∠DPE,即可证出平行线.
27.【答案】解:(1)如图1,过B,D分别作直线d的垂线,垂足分别为P,Q,
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠BCD=90°,
∴∠PCB+∠QCD=90°,
∵∠PBC+∠PCB=90°,
∴∠PBC=∠QCD,
在△CBP和△CDQ中
∴△CBP≌△CDQ(AAS),
∴CP=DQ=1,
∵BP=3,
∴;
(2)如图2,过B,D分别作直线d的垂线,垂足分别为M,N,作∠BPC=∠DQC=120°,P,Q在直线d上,
∵∠DCB=120°,
∴∠PCB+∠DCQ=60°,
∵∠PBC+∠PCB=60°,
∴∠PBC=∠DCQ,
在△BPC和△CQD中
∴△BPC≌△DQC,
∴PC=DQ,PB=CQ,
∵∠BPC=∠DQC=120°,
∴∠BPM=∠DQN=60°,
∴sin∠BPM=,sin∠DQN=,
∵BM=3,DN=1,
∴PB=2,DQ=,
∴PC=DQ=,
∵∠BPM=60°,
∴∠PBM=30°,
∵在Rt△PBM中,PM=PB=,
∴MC=PC+PM=,
∴在Rt△PBM中,BC===.
【知识点】正方形的性质
【解析】【分析】(1)如图1,过B,D分别作直线d的垂线,垂足分别为P,Q,通过证得△CBP≌△CDQ,得出CP=DQ=1,然后根据勾股定理即可求得;
(2)如图2,过B,D分别作直线d的垂线,垂足分别为M,N,作∠BPC=∠DQC=120°,P,Q在直线d上,通过证得△BPC≌△DQC证得PC=DQ,通过解直角三角形求得PM,DQ,进而求得MC,然后根据勾股定理即可求得.
28.【答案】解:(1)证明:在正方形ABCD中,
∵AD=CD,
∴∠DAE=∠DCG,
∵DE=DG,
∴∠DEG=∠DGE,
∴∠AED=∠CGD.
在△AED和△CGD中,
∴△AED≌△CGD(AAS),
∴AE=CG.
(2)解法一:BE∥DF,理由如下:
在正方形ABCD中,AB∥CD,
∴∠BAE=∠DCG.
在△AEB和△CGD中,
∴△AEB≌△CGD(SAS),
∴∠AEB=∠CGD.
∵∠CGD=∠EGF,
∴∠AEB=∠EGF,
∴BE∥DF.
解法二:BE∥DF,理由如下:
在正方形ABCD中,
∵AD∥FC,
∴=.
∵CG=AE,
∴AG=CE.
又∵在正方形ABCD中,AD=CB,
∴=.
又∵∠GCF=∠ECB,
∴△CGF∽△CEB,
∴∠CGF=∠CEB,
∴BE∥DF.
【知识点】正方形的性质
【解析】【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;
(2)先证明△AEB≌△CGD,得出对应角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可证出平行线.
1 / 1