中小学教育资源及组卷应用平台
专题09 简单概率计算
【热考题型】
【重难点突破】
考查题型一 概率的计算
1.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是
A.连续抛一枚均匀硬币2次必有1次正面朝上
B.连续抛一枚均匀硬币10次都可能正面朝上
C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次
D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的
【详解】
A.连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;
B.连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;
C.大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;
D.通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.
故选A.
2.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )
A.小亮明天的进球率为10%
B.小亮明天每射球10次必进球1次
C.小亮明天有可能进球
D.小亮明天肯定进球
【详解】
解:根据以往比赛数据统计,小亮进球率为10%,
他明天将参加一场比赛小亮明天有可能进球.
故选C.
3.“14人中至少有2人在同一个月过生日”这一事件发生的概率为P,则( )
A.P=0 B.0<P<1 C.P=1 D.P>1
【详解】
解:∵一年有12个月,14个人中有12个人在不同的月份过生日,剩下的两人不论哪个月生日,都和前12人中的一个人同一个月过生日
∴“14人中至少有2人在同一个月过生日”是必然事件,
即这一事件发生的概率为.
故选:.
4.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )
A.种植10棵幼树,结果一定是“有9棵幼树成活”
B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”
C.种植10n棵幼树,恰好有“n棵幼树不成活”
D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9
【详解】
A. 种植10棵幼树,结果可能是“有9棵幼树成活”,故不正确;
B. 种植100棵幼树,结果可能是“90棵幼树成活”和“10棵幼树不成活” ,故不正确;
C. 种植10n棵幼树,可能有“9n棵幼树成活” ,故不正确;
D. 种植10n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9,故正确;
故选D.
5.抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是( )
A.可能有50次反面朝上 B.每两次必有1次反面朝上
C.必有50次反面朝上 D.不可能有100次反面朝上
【详解】
解:抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,可能有50次反面朝上,
故选:A.
考查题型二 判断几个事件概率的大小关系
6.从一副完整的扑克牌中任意抽取1张,下列事件与抽到“”的概率相同的是( )
A.抽到“大王” B.抽到“2” C.抽到“小王” D.抽到“红桃”
【详解】
解:扑克牌一共有54张,所以抽到“”的概率是,
A. 抽到“大王” 的概率是,
B. 抽到“2” 的概率是,
C. 抽到“小王”的概率是,
D. 抽到“红桃”的概率是,
故选B.
7.一个布袋里装有3个红球,4个黑球,5个白球,它们除颜色外都相同,从中任意摸出一个球,则下列事件中,发生可能性最大的是( )
A.摸出的是红球 B.摸出的是黑球 C.摸出的是绿球 D.摸出的是白球
【详解】
解:任意摸出一个球,为红球的概率是:,
任意摸出一个球,为黑球的概率是:,
任意摸出一个球,为绿球的概率是:,
任意摸出一个球,为白球的概率是:,
故可能性最大的为:摸出的是白球,
故答案为:D.
8.下列事件是必然事件的是( )
A.NBA 球员投篮 10 次,投中十次 B.明天会下雪
C.党的十九大于 2017 年 10 月 18 日在北京召开 D.抛出一枚硬币,落地后正面朝上
【详解】
A、NBA 球员投篮 10 次,投中十次是随机事件,错误;
B、明天会下雪是随机事件,错误;
C、党的十九大于 2017 年 10 月 18 日在北京召开是必然事件,正确;
D、抛出一枚硬币,落地后正面朝上是随机事件,错误
故本题答案应为C
9.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是( )
A.朝上一面的数字恰好是6 B.朝上一面的数字是2的整数倍
C.朝上一面的数字是3的整数倍 D.朝上一面的数字不小于2
【详解】
解:A. 朝上一面的数字恰好是6的概率为:1÷6=;
B. 朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:3÷6=;
C. 朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:2÷6=;
D. 朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,,故概率为:5÷6=
∵<<<
∴D选项事件发生的概率最大
故选D.
10.有三个事件,事件A:若a,b是实数,则;事件B:打开电视正在播广告;事件C:同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13,则这三个事件的概率,,的大小关系正确的是( )
A. B.
C. D.
【详解】
解:事件是必然事件,则,
事件是随机事件,则,
事件是不可能事件,则,
因此有,
故选:D.
考查题型三 根据概率计算公式求概率
11.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )
A. B. C. D.
【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,
∴朝上一面的数字是2的概率为:
故选A.
12.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )
A. B. C. D.
【详解】
∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,
十位数为3,则两位数是3的倍数的个数为2.
∴得到的两位数是3的倍数的概率为: =.
故答案选:B.
13.不透明的袋子中有3个白球和2个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,恰好是白球的概率()
A. B. C. D.
【详解】
∵有5种可能性,白球有3种可能性,
∴摸出1个球,恰好是白球的概率,
故选C.
14.甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.
袋子 糖果 红色 黄色 绿色 总计
甲袋 2颗 2颗 1颗 5颗
乙袋 4颗 2颗 4颗 10颗
若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋( )A.摸出红色糖果的概率大 B.摸出红色糖果的概率小
C.摸出黄色糖果的概率大 D.摸出黄色糖果的概率小
【详解】
解:P(甲袋摸出红色糖果),
P(甲袋摸出黄色糖果),
P(乙袋摸出红色糖果),
P(乙袋摸出黄色糖果),
∴P(甲袋摸出红色糖果)=P(乙袋摸出红色糖果),故A,B错误;
P(甲袋摸出黄色糖果)>P(乙袋摸出黄色糖果),故D错误,C正确.
故选:C.
15.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是( )
A. B. C. D.
【详解】
解:∵由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,
∴概率为:;
故选:B.
考查题型四 根据概率做判断
16.如图,一个可以自由转动的转盘被分为8个大小相同的扇形,颜色标注为红,黄,绿,指针的位置固定,转动转盘停止后,其中某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则下列说法正确的是( )
A.指针指向黄色的概率为
B.指针不指向红色的概率为
C.指针指向红色或绿色的概率为
D.指针指向绿色的概率大于指向黄色的概率
【详解】
解:转盘分成8个相同的图形,其中黄色有3个,绿色有3个,红色有2个,
∴(指针指向黄色),
(指针不指向红色),
(指针指向红色或绿色),
(指针指向绿色),
则(指针指向绿色)(指针指向黄色),
综上所述,正确的只有B,
故选:B.
17.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( )
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的不一定是红球
C.第一次摸出的球是红球的概率是
D.两次摸出的球都是红球的概率是
【详解】
解:A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故本选项说法错误,符合题意;
B、第一次摸出的球是红球,第二次摸出的不一定是红球,故本选项说法正确,不符合题意;
C、∵不透明袋子中装有1个红球,2个绿球,∴第一次摸出的球是红球的概率是,故本选项说法正确,不符合题意;
D、共用9种等情况数,分别是红红、红绿、红绿、绿红、绿绿、绿绿、绿红、绿绿、绿绿,则两次摸出的球都是红球的概率是,故本选项说法正确,不符合题意;
故选:A.
18.一个不透明的袋中装有8个黄球,个红球,个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列与的关系一定正确的是( )
A. B. C. D.
【详解】
解:∵一个不透明的袋中装有8个黄球,m个红球,n个白球,
∴任意摸出一个球,是黄球的概率为:,不是黄球的概率为:,
∵是黄球的概率与不是黄球的概率相同,
∴=,
∴m+n=8.
故选:C.
19.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是( ).
A.从甲箱摸到黑球的概率较大
B.从乙箱摸到黑球的概率较大
C.从甲、乙两箱摸到黑球的概率相等
D.无法比较从甲、乙两箱摸到黑球的概率
【详解】
解:从甲箱摸到黑球的概率是,
从乙箱摸到黑球的概率是,
因为,所以从乙箱摸到黑球的概率较大,
故选B
20.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解:
甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;
乙:只要指针连续转六次,一定会有一次停在6号扇形;
丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;
丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.
其中,你认为正确的见解有( )
A.1个 B.2个 C.3个 D.4个
【详解】
随机事件发生的可能性大小在0至1之间,可能性大的也不是肯定会发生,可能性小的也不是肯定不会发生,所以只有丙的说法是对的.
甲、错误,是随机事件,不能确定;
乙、错误,是随机事件,不能确定;
丙、正确,由于奇数号扇形和偶数号扇形数目相同,指针停在奇数号扇形的机会等于停在偶数号扇形的机会;
丁、错误,随机事件,不受意识控制.
故选A.
考查题型五 已知概率求数量
21.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )
A. B. C. D.
【详解】
此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.
22.为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼记上标记,然后放回池塘去,经过一段时间,待有标记的鱼完全混合后,第二次再捕捞200条鱼,发现有5条鱼有标记,那么你估计池塘里大约有( )鱼.
A.1000条 B.4000条 C.3000条 D.2000条
【详解】
设池塘里大约有x鱼.则,解得 ,故选B.
23.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的可能性是,则袋中球的总个数是( )
A.2 B.4 C.6 D.8
【详解】
试题解析:袋中球的总个数是:2÷=8(个).
故选D.
24.抛掷一枚质地均匀的硬币次,正面朝上的次数最有可能为( )
A. B. C. D.
【详解】
抛掷一枚质地均匀的硬币次,正面朝上的次数最有可能为次,
故选C.
25.一个不透明的盒子中装有个红球,个白球和个黄球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是白球的可能性为( )
A. B. C. D.
【详解】
从中随机摸出一个小球,恰好是白球的可能性为.
故选B.
考查题型六 与几何有关的概率计算
26.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )
A. B. C. D.
【详解】
设阴影部分的面积是x,则整个图形的面积是7x,
则这个点取在阴影部分的概率是,
故选C.
27.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )
A. B. C. D.
【详解】
解:由扇形统计图可得,指针落在数字“Ⅱ”所示区域内的概率是:.
故选:A.
28.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )
A. B. C. D.无法确定
【详解】
如图,根据正六方形的性质可得,△AOC △ABC(SSS),同理△EOC △EDC, △AFE △AOE,
所以,阴影面积=空白部分面积
所以,飞镖落在白色区域的概率为
故选B
29.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )
A. B. C. D.
【详解】
解:A.如图所示:指针落在阴影区域内的概率为:;
B.如图所示:指针落在阴影区域内的概率为:;
C.如图所示:指针落在阴影区域内的概率为:;
D.如图所示:指针落在阴影区域内的概率为:,
∵,∴指针落在阴影区域内的概率最大的转盘是:.
故选A.
30.如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为( )
A. B. C. D.
【详解】
解:解:由题意,在一个棱长为3cm的正方体的表面涂上颜色,将其分割成27个棱长为1cm的小正方体,
在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,
可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,
满足条件的事件是取出的小正方体表面有一个面都涂色,有6种结果,
所以所求概率为.
故选:B.
考查题型七 列举法求概率
31.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是( )
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的球不一定是绿球
C.第一次摸出的球是红球,第二次摸出的球不一定是红球
D.第一次摸出的球是红球的概率是;两次摸出的球都是红球的概率是
【详解】
A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故错误;
B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故正确;
C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故正确;
D、第一次摸出的球是红球的概率是;
两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是,故正确;
故选:A.
32.现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是( )
A. B. C. D.
【详解】
解:∵有4盒同一品牌的牛奶,其中2盒已过期,
设未过期的两盒为A,B,过期的两盒为C,D,随机抽取2盒,
则结果可能为(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),
共6种情况,其中至少有一盒过期的有5种,
∴至少有一盒过期的概率是,
故选D.
33.如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( )
A. B. C. D.
【详解】如图所示,
共有12种情况,恰好摆放成如图所示位置的只有1种,所以概率是,
故选A.
34.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是( )
A. B. C. D.1
【详解】
从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,
其中能构成三角形的情况有:3,5,7;5,7,10,共2种,
则P(能构成三角形)==,
故选B.
35.为支援雅安灾区,小慧准备通过爱心热线捐款,他只记得号码的前5位,后三位由5,1,2这三个数字组成,但具体顺序忘记了.他第一次就拨通电话的概率是( )
A. B. C. D.
【详解】
解:由于她只记得号码的前5位,后三位由5,1,2,这三个数字组成,故后三位可能的结果有:512、521、152、125、251、215,共6种,而满足条件的结果只有1种,故她第一次就拨通电话的概率 .
故选C.
考查题型八 列表法或树状图法求概率
36.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C. D.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为,
故选A.
37.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )
A. B. C. D.
【详解】
解: 列表如下:
,
共有6种等可能的结果,其中小亮恰好站在中间的占2种,
所以小亮恰好站在中间的概率=.
故选B.
38.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( )
A. B. C. D.
【详解】
解:画树状图得:
∵共有12种等可能的结果,选出的2名学生中恰好有2名女生的有6种情况;
∴P(2女生)=.
故选:B.
39.同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是( )
A. B. C. D.
【详解】
列表如下:
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
由表知,两枚骰子向上的点数之和所有可能的结果数为36种,两枚骰子向上的点数之和为7的结果数为6,故两枚骰子向上的点数之和为7的概率是:
故选:B.
40.某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )
A. B. C. D.
【详解】
根据题意,设三个宣传队分别为列表如下:
小华\小丽
总共由9种等可能情况,她们恰好选择同一个宣传队的情况有3种,
则她们恰好选到同一个宣传队的概率是.
故选C
考查题型九 游戏的公平性
41.甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为”算甲赢,掷出“和为”算乙赢,这个游戏是否公平?( )
A.公平 B.对甲有利 C.对乙公平 D.不能判断
【详解】
两骰子上的数字之和是7的有3+4=7;4+3=7,2+5=7;5+2=7,1+6=7;6+1=7共6种情况,和为8的有2+6=8;6+2=8,3+5=8;5+3=8;4+4=8共5种情况,甲赢的概率大,
故选:B.
42.一个箱子中放有红、黄、黑三种只有颜色不同的小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是( )
A.公平的
B.不公平的
C.先摸者赢的可能性大
D.后摸者赢的可能性大
【详解】
解:∵一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,
∴三个人摸到每种球的概率均相等,故这个游戏是公平的.
故选A.
43.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.则当x=( )时,游戏对甲乙双方公平.
A.3 B.4 C.5 D.6
【详解】
解:根据题意得:=,即2x=20-x-2x,
解得:x=4.
故选B.
44.甲乙两人轮流在黑板上写下不超过 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字( )时有必胜的策略.
A.10 B.9 C.8 D.6
【详解】
选项A:当甲写10时,乙可以写3、4、6、7、8、9,如果乙写7,则乙必胜,因为无论甲写3,4,6,8,9这五个数中的6(连带3)或8(连带4),乙可以写4或3,剩下2个数字;当甲写3或4时,乙可以写8(连带4)或6(连带3),剩下偶数个数字甲最后不能写,乙必胜,不符合题意;
选项B:当甲写9后,乙可以写2、4、5、6、7、8、10,如果乙写6,则乙必胜,因为剩下4、5、7、8、10这5个数中,无论甲写8(连带4)或10(连带5),乙可以写5或4;当甲写4或5时,乙可以写10(连带5)或8(连带4),甲最后不能写,乙必胜,不符合题意;
选项C:当甲写8时,乙可以写3、5、6、7、9、10,当乙写6(或10)时,甲就必须写10(或6),因为乙写6(或10)后,连带3(或5)也不能写了,这样才能保证剩下能写的数有偶数个,甲才可以获胜,不符合题意;
选项D:甲先写6,由于6的约数有1,2,3,6,接下来乙可以写的数只有4、5、7、8、9、10,把这6个数分成三组:(4,7)、(5,8)、(9,10),当然也可(4,5)、(8,10)、(7,9)或(4,9)、(5,7)、(8,10)等等,只要组内两数大数不是小数的倍数即可,这样,乙写某组数中的某个数时,甲就写同组中的另一数,从而甲一定写最后一个,甲必获胜,符合题意.
综上可知,只有甲先写6,才能必胜.
故选:D.
45.甲、乙两人玩一个游戏,判定这个游戏公平的标准是( )
A.游戏的规则由甲方确定 B.游戏的规则由乙方确定
C.游戏的规则由甲、乙双方商定 D.甲、乙双方赢的概率相等
【详解】
根据游戏是否公平不在于谁定游戏规则,游戏共是否公平的取决于游戏双方要各有50%赢的机会,
∴A.游戏的规则由甲方确定,故此选项错误;
B. 游戏的规则由乙方确定,故此选项错误;
C. 游戏的规则由甲乙双方商定,故此选项错误;
D. 游戏双方赢的概率相等,故此选项正确.
故选D.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题09 简单概率计算
【热考题型】
【重难点突破】
考查题型一 概率的计算
1.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是
A.连续抛一枚均匀硬币2次必有1次正面朝上
B.连续抛一枚均匀硬币10次都可能正面朝上
C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次
D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的
2.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )
A.小亮明天的进球率为10%
B.小亮明天每射球10次必进球1次
C.小亮明天有可能进球
D.小亮明天肯定进球
3.“14人中至少有2人在同一个月过生日”这一事件发生的概率为P,则( )
A.P=0 B.0<P<1 C.P=1 D.P>1
4.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )
A.种植10棵幼树,结果一定是“有9棵幼树成活”
B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”
C.种植10n棵幼树,恰好有“n棵幼树不成活”
D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9
5.抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是( )
A.可能有50次反面朝上 B.每两次必有1次反面朝上
C.必有50次反面朝上 D.不可能有100次反面朝上
考查题型二 判断几个事件概率的大小关系
6.从一副完整的扑克牌中任意抽取1张,下列事件与抽到“”的概率相同的是( )
A.抽到“大王” B.抽到“2” C.抽到“小王” D.抽到“红桃”
7.一个布袋里装有3个红球,4个黑球,5个白球,它们除颜色外都相同,从中任意摸出一个球,则下列事件中,发生可能性最大的是( )
A.摸出的是红球 B.摸出的是黑球 C.摸出的是绿球 D.摸出的是白球
8.下列事件是必然事件的是( )
A.NBA 球员投篮 10 次,投中十次 B.明天会下雪
C.党的十九大于 2017 年 10 月 18 日在北京召开 D.抛出一枚硬币,落地后正面朝上
9.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是( )
A.朝上一面的数字恰好是6 B.朝上一面的数字是2的整数倍
C.朝上一面的数字是3的整数倍 D.朝上一面的数字不小于2
10.有三个事件,事件A:若a,b是实数,则;事件B:打开电视正在播广告;事件C:同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13,则这三个事件的概率,,的大小关系正确的是( )
A. B.
C. D.
考查题型三 根据概率计算公式求概率
11.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )
A. B. C. D.
12.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )
A. B. C. D.
13.不透明的袋子中有3个白球和2个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,恰好是白球的概率()
A. B. C. D.
14.甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.
袋子 糖果 红色 黄色 绿色 总计
甲袋 2颗 2颗 1颗 5颗
乙袋 4颗 2颗 4颗 10颗
若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋( )A.摸出红色糖果的概率大 B.摸出红色糖果的概率小
C.摸出黄色糖果的概率大 D.摸出黄色糖果的概率小
15.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是( )
A. B. C. D.
考查题型四 根据概率做判断
16.如图,一个可以自由转动的转盘被分为8个大小相同的扇形,颜色标注为红,黄,绿,指针的位置固定,转动转盘停止后,其中某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则下列说法正确的是( )
A.指针指向黄色的概率为
B.指针不指向红色的概率为
C.指针指向红色或绿色的概率为
D.指针指向绿色的概率大于指向黄色的概率
17.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( )
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的不一定是红球
C.第一次摸出的球是红球的概率是
D.两次摸出的球都是红球的概率是
18.一个不透明的袋中装有8个黄球,个红球,个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列与的关系一定正确的是( )
A. B. C. D.
19.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是( ).
A.从甲箱摸到黑球的概率较大
B.从乙箱摸到黑球的概率较大
C.从甲、乙两箱摸到黑球的概率相等
D.无法比较从甲、乙两箱摸到黑球的概率
20.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解:
甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;
乙:只要指针连续转六次,一定会有一次停在6号扇形;
丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;
丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.
其中,你认为正确的见解有( )
A.1个 B.2个 C.3个 D.4个
考查题型五 已知概率求数量
21.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )
A. B. C. D.
22.为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼记上标记,然后放回池塘去,经过一段时间,待有标记的鱼完全混合后,第二次再捕捞200条鱼,发现有5条鱼有标记,那么你估计池塘里大约有( )鱼.
A.1000条 B.4000条 C.3000条 D.2000条
23.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的可能性是,则袋中球的总个数是( )
A.2 B.4 C.6 D.8
24.抛掷一枚质地均匀的硬币次,正面朝上的次数最有可能为( )
A. B. C. D.
25.一个不透明的盒子中装有个红球,个白球和个黄球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是白球的可能性为( )
A. B. C. D.
考查题型六 与几何有关的概率计算
26.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )
A. B. C. D.
27.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )
A. B. C. D.
28.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )
A. B. C. D.无法确定
29.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )
A. B. C. D.
30.如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为( )
A. B. C. D.
考查题型七 列举法求概率
31.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是( )
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的球不一定是绿球
C.第一次摸出的球是红球,第二次摸出的球不一定是红球
D.第一次摸出的球是红球的概率是;两次摸出的球都是红球的概率是
32.现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是( )
A. B. C. D.
33.如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( )
A. B. C. D.
34.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是( )
A. B. C. D.1
35.为支援雅安灾区,小慧准备通过爱心热线捐款,他只记得号码的前5位,后三位由5,1,2这三个数字组成,但具体顺序忘记了.他第一次就拨通电话的概率是( )
A. B. C. D.
考查题型八 列表法或树状图法求概率
36.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C. D.
37.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )
A. B. C. D.
38.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( )
A. B. C. D.
39.同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是( )
A. B. C. D.
40.某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )
A. B. C. D.
考查题型九 游戏的公平性
41.甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为”算甲赢,掷出“和为”算乙赢,这个游戏是否公平?( )
A.公平 B.对甲有利 C.对乙公平 D.不能判断
42.一个箱子中放有红、黄、黑三种只有颜色不同的小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是( )
A.公平的
B.不公平的
C.先摸者赢的可能性大
D.后摸者赢的可能性大
43.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.则当x=( )时,游戏对甲乙双方公平.
A.3 B.4 C.5 D.6
44.甲乙两人轮流在黑板上写下不超过 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字( )时有必胜的策略.
A.10 B.9 C.8 D.6
45.甲、乙两人玩一个游戏,判定这个游戏公平的标准是( )
A.游戏的规则由甲方确定 B.游戏的规则由乙方确定
C.游戏的规则由甲、乙双方商定 D.甲、乙双方赢的概率相等
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)