中小学教育资源及组卷应用平台
专题10 频率
【热考题型】
【重难点突破】
考查题型一 求某件事的频率
1.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:、“北斗卫星”:、“时代”;、“智轨快运系统”;、“东风快递”;、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“时代”的频率是( )
A.0.25 B.0.3 C.25 D.30
【详解】
由图知,八年级(3)班的全体人数为:(人)
选择“5G时代”的人数为:30人
∴选择“时代”的频率是:
故选:B.
2.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是( ).
类型 健康 亚健康 不健康
数据(人) 32 7 1
A.32 B.7 C. D.
【详解】
根据题意,得测试结果为“健康”的频率是
故选:D.
3.已知一组数据﹣,π,﹣ ,1,2 ,则无理数出现的频率是( )
A.20% B.40% C.60% D.80%
【详解】
在题目所给的数据中,π,都是无理数,共2个,所以无理数出现的频率是=40%,故选B.
4.在一个暗箱里放有个除颜色外其他完全相同的球,这个球中红球只有4个,每次将球搅搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出大约是( )
A.14 B.15 C.16 D.17
【详解】
∵摸到红球的频率稳定在25%,
∴摸到红球的概率为25%,
而m个小球中红球只有4个,
∴摸到红球的频率为.解得.
故选C.
5.数字“”中,数字“”出现的频率是( )
A. B. C. D.
【详解】
数字的总数是8,有3个数字“”,
因而“”出现的频率是:.
故选:A.
6.小明5分钟内共投篮60次,共进球15个,则小明进球的频率是( )
A.0.25 B.60 C.0.26 D.15
【详解】
解:∵小东5分钟内共投篮60次,共进球15个,
∴小东进球的频率是:
故选:A.
7.甲、乙两名同学在一次用频率估计概率的实验中,统计了某一个结果出现的频率,绘制了如下的表格,则符合这一结果的实验可能是( )
实验次数 100 200 300 500 800 1200
频率 0.430 0.360 0.320 0.328 0.330 0.329
A.抛一枚质地均匀的硬币,出现正面的概率
B.从一个装有3个红球和2个白球的不透明袋子里任取1球,取出红球的概率
C.掷一枚均匀的正方体骰子,出现的点数是3的倍数的概率
D.从正方形、正五边形、正六边形中任意取一个图形,是轴对称图形的概率
【详解】
解:
A.掷一枚硬币,出现正面向上的概率为;
B.一个装有3个红球和2个白球的不透明袋子里任取1球,取出红球的概率为;C.掷一枚均匀的正方体骰子,出现的点数是3的倍数的概率为;
D.从正方形、正五边形、正六边形中任意取一个图形,是轴对称图形的概率为1,根据统计图得到实验的概率在0.33附近.只有C符合这个概率范围,
故选C.
考查题型二 由频率估计概率
8.投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是( )
A.p一定等于
B.p一定不等于
C.多投一次,p更接近
D.投掷次数逐步增加,p稳定在附近
【详解】
投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近.
故选:D.
9.某科研小组,为了考查某河野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河中野生鱼有( )
A.8000条 B.4000条 C.2000条 D.1000条
【详解】
试题解析:∵300条鱼中发现有标记的鱼有15条,
∴有标记的占到,
∵有200条鱼有标记,
∴该河流中有野生鱼200÷=4000(条);
故选B.
10.某服装厂对一批服装进行质量抽检结果如下:
抽取的服装数量
优等品数量
优等品的频率
则这批服装中,随机抽取一件是优等品的概率约为( )
A. B. C. D.
【详解】
解:∵46+89+182+450+900=1667,
50+100+200+500+1000=1850,
1667÷1850≈0.90,
∴从这批服装中随机抽取一件是优等品的概率约为0.90,
故选:D.
11.一个不透明的口袋里装有除颜色外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球个数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为( )
A.60个 B.50个 C.40个 D.30个
【详解】
解:∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球,
∴白球与红球的数量之比为1:4,
∵白球有10个,
∴红球有10×4=40(个),
故选C.
12.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是( )
A.0.8 B.0.75 C.0.6 D.0.48
【详解】
设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,
所以现年20岁到这种动物活到25岁的概率为=0.75,
故选B.
考查题型三 由频率估计概率的综合应用
13.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:样本容量为 ,a= ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
【详解】
解:(1),
所以样本容量为100;
B组的人数为,
所以,则;
故答案为,;
(2)补全频数分布直方图为:
(3)样本中身高低于的人数为,
样本中身高低于的频率为,
所以估计从该地随机抽取名学生,估计这名学生身高低于的概率为.
14.一只不透明袋子中装有个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:
(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是______(精确到),由此估出红球有______个.
(2)现从该袋中摸出个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到个白球,个红球的概率.
【详解】
解:(1)随着摸球次数的越来越多,频率越来越靠近0.33,因此接近的常数就是0.33;
设红球由个,由题意得:
,解得:,经检验:是分式方程的解;
故答案为:0.33,2;
(2)画树状图得:
∵共有9种等可能的结果,摸到一个白球,一个红球有4种情况,
∴摸到一个白球一个红球的概率为:;
故答案为:.
15.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.
(1)求参与该游戏可免费得到景点吉祥物的频率;
(2)请你估计纸箱中白球的数量接近多少?
【详解】
解:(1)由题意得:,
答:参与该游戏可免费得到景点吉祥物的频率为;
(2)设纸箱中白球的数量为个,
由(1)可知,随机摸出一个球是红球的概率约为,
则,
解得,
经检验,是所列分式方程的解,且符合题意,
答:纸箱中白球的数量接近36个.
16.[概率中的方案设计]小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影部分时小红胜,否则小明胜,未掷入圈内(半径为3m的圆内)或掷在边界上重掷.
(1)你认为游戏公平吗 为什么
(2)游戏结束,小明边走边想:能否用频率估计概率的方法,来估算不规则图形的面积呢 请你设计一个方案,解决这一问题(要求画出图形,说明设计步骤、原理,并给出计算公式)
【详解】
(1)不公平.理由如下:
(掷中阴影部分),即小红获胜的概率为,则小明获胜的概率为,,
游戏不公平
(2)能利用频率估计概率的方法估算不规则图形的面积设计方案:①设计一个可测量面积的规则图形将不规则图形围起来(如正方形,其面积为),如图所示;
②往图形中掷点(如蒙上眼睛往图形中随意掷小石子,掷在正方形外或边界上不作记录);
③当所掷次数充分大时,记录并统计结果,设掷入正方形内次,其中次掷入不规则图形内;
④设不规则图形的面积为,用频率估计概率,即掷入不规则图形内的频率(掷入不规则图形内),而(掷入不规则图形内),故,即.
17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天需求量与当天本地最高气温有关.为了制定今年六月份的订购计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数),等数据统计如下:
x(℃) 15≤x<20 20≤x<25 25≤x<30 30≤x≤35
天数 6 10 11 3
y(瓶) 270 330 360 420
以最高气温位于各范围的频率代替最高气温位于该范围的概率.
(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;
(2)根据供货方的要求,今年这种酸奶每天的进货量必须为100的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶的利润最大?
【详解】
解:(1)依题意可知,
今年六月份每月售出(不含降价处理)的酸奶瓶数不高于瓶的概率为;
(2)根据题意可知:
该超市当天售出一瓶酸奶可获利元,降级处理一瓶亏元,
设今年六月销售这种酸奶每天的进货量为瓶,平均每天的利润为元,则:
当时,
,
当时,
,
当时,
,
当时,
,
当时,与时比较,
六月增订的部分,亏本售出的比正常售出的多,
所以其每天的平均利润比时平均每天利润少.
综上所述:时,的值达到最大.
即今年六月份这种酸奶一年的进货量为瓶时,平均每天销售这种酸奶的利润最大.
18.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为.
(1)假设平均每天通过该路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆各是多少辆;
(2)目前在此路口,汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的绿灯亮的时间做出合理的调整.
【详解】
(1)汽车在此向左转的车辆为5 000×=1 500(辆),
在此向右转的车辆为5 000×=2 000(辆),在此直行的车辆为5 000×=1 500(辆).
(2)用频率估计概率的知识,得P(汽车向左转)=,P(汽车向右转)=,P(汽车直行)=.因为绿灯亮总时间为30+30+30=90(s),
所以可调整绿灯亮的时间如下:向左转绿灯亮的时间为90×=27(s),向右转绿灯亮的时间为90×=36(s),直行绿灯亮的时间为90×=27(s).
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题10 频率
【热考题型】
【重难点突破】
考查题型一 求某件事的频率
1.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:、“北斗卫星”:、“时代”;、“智轨快运系统”;、“东风快递”;、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“时代”的频率是( )
A.0.25 B.0.3 C.25 D.30
2.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是( ).
类型 健康 亚健康 不健康
数据(人) 32 7 1
A.32 B.7 C. D.
3.已知一组数据﹣,π,﹣ ,1,2 ,则无理数出现的频率是( )
A.20% B.40% C.60% D.80%
4.在一个暗箱里放有个除颜色外其他完全相同的球,这个球中红球只有4个,每次将球搅搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出大约是( )
A.14 B.15 C.16 D.17
5.数字“”中,数字“”出现的频率是( )
A. B. C. D.
6.小明5分钟内共投篮60次,共进球15个,则小明进球的频率是( )
A.0.25 B.60 C.0.26 D.15
7.甲、乙两名同学在一次用频率估计概率的实验中,统计了某一个结果出现的频率,绘制了如下的表格,则符合这一结果的实验可能是( )
实验次数 100 200 300 500 800 1200
频率 0.430 0.360 0.320 0.328 0.330 0.329
A.抛一枚质地均匀的硬币,出现正面的概率
B.从一个装有3个红球和2个白球的不透明袋子里任取1球,取出红球的概率
C.掷一枚均匀的正方体骰子,出现的点数是3的倍数的概率
D.从正方形、正五边形、正六边形中任意取一个图形,是轴对称图形的概率
考查题型二 由频率估计概率
8.投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是( )
A.p一定等于
B.p一定不等于
C.多投一次,p更接近
D.投掷次数逐步增加,p稳定在附近
9.某科研小组,为了考查某河野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河中野生鱼有( )
A.8000条 B.4000条 C.2000条 D.1000条
10.某服装厂对一批服装进行质量抽检结果如下:
抽取的服装数量
优等品数量
优等品的频率
则这批服装中,随机抽取一件是优等品的概率约为( )
A. B. C. D.
11.一个不透明的口袋里装有除颜色外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球个数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为( )
A.60个 B.50个 C.40个 D.30个
12.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是( )
A.0.8 B.0.75 C.0.6 D.0.48
考查题型三 由频率估计概率的综合应用
13.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:样本容量为 ,a= ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
14.一只不透明袋子中装有个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:
(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是______(精确到),由此估出红球有______个.
(2)现从该袋中摸出个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到个白球,个红球的概率.
15.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.
(1)求参与该游戏可免费得到景点吉祥物的频率;
(2)请你估计纸箱中白球的数量接近多少?
16.[概率中的方案设计]小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影部分时小红胜,否则小明胜,未掷入圈内(半径为3m的圆内)或掷在边界上重掷.
(1)你认为游戏公平吗 为什么
(2)游戏结束,小明边走边想:能否用频率估计概率的方法,来估算不规则图形的面积呢 请你设计一个方案,解决这一问题(要求画出图形,说明设计步骤、原理,并给出计算公式)
17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天需求量与当天本地最高气温有关.为了制定今年六月份的订购计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数),等数据统计如下:
x(℃) 15≤x<20 20≤x<25 25≤x<30 30≤x≤35
天数 6 10 11 3
y(瓶) 270 330 360 420
以最高气温位于各范围的频率代替最高气温位于该范围的概率.
(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;
(2)根据供货方的要求,今年这种酸奶每天的进货量必须为100的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶的利润最大?
18.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为.
(1)假设平均每天通过该路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆各是多少辆;
(2)目前在此路口,汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的绿灯亮的时间做出合理的调整.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)