第1章 二次函数常考题精选(原卷版+解析版)

文档属性

名称 第1章 二次函数常考题精选(原卷版+解析版)
格式 zip
文件大小 2.6MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2022-07-20 11:14:08

文档简介

中小学教育资源及组卷应用平台
保密★启用前
2022-2023学年浙江九年级数学上册第1章《二次函数》常考题精选
学校:___________姓名:___________班级:___________考号:___________
注意事项∶
1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 所有答案都必须写到答题卷上。选择题必须使用2B铅笔填涂;非选择题必须使用黑色字迹的签字笔或钢笔书写,字体要工整,笔迹要清楚。21cnjy.com
3.本试卷分试题卷和答题卷两部分,满分100分。考试时间共90分钟。
一、单选题(共30分)
1.(本题3分)(2019·浙江·长兴县实验中学九年级期中)若关于x的函数y=(2﹣a)x2﹣x是二次函数,则a的取值范围是( )
A.a≠0 B.a≠2 C.a<2 D.a>2
【答案】B
【解析】
【详解】
解:∵函数y=(2-a)x2-x是二次函数,
∴2-a≠0,即a≠2,
故选B.
2.(本题3分)(2020·浙江·九年级期末)抛物线y=3(x﹣2)2+5的顶点坐标是(  )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
【答案】C
【解析】
【分析】
根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.
【详解】
∵抛物线解析式为y=3(x-2)2+5,
∴二次函数图象的顶点坐标是(2,5).
故选C.
【点睛】
本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.
3.(本题3分)(2020·浙江省温岭市第四中学九年级期中)对于二次函数y=2(x﹣2)2+1,下列说法中正确的是(  )
A.图象的开口向下 B.函数的最大值为1
C.图象的对称轴为直线x=﹣2 D.当x<2时y随x的增大而减小
【答案】D
【解析】
【分析】
根据二次函数的图象和性质,可以判断各个选项中的说法是否正确.
【详解】
二次函数y=2(x-2)2+1,a=2>0,
∴该函数的图象开口向上,故选项A错误,
函数的最小值是y=1,故选项B错误,
图象的对称轴是直线x=2,故选项C错误,
当x<2时y随x的增大而减小,故选项D正确,
故选D.
【点睛】
考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
4.(本题3分)(2020·浙江·浣江教育九年级期中)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).
A.; B.;
C.; D..
【答案】B
【解析】
【分析】
根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.
【详解】
解:将抛物线向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为,
故选B.
【点睛】
本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键.
5.(本题3分)(2020·浙江温州·九年级阶段练习)烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为(  )
A.3s B.4s C.5s D.10s
【答案】C
【解析】
【分析】
将h关于t的函数关系式变形为顶点式,即可得出升到最高点的时间,从而得出结论.
【详解】
解:∵h=﹣2t2+20t+1=﹣2(t﹣5)2+51,
∴当t=5时,礼炮升到最高点.
故选:C.
【点睛】
本题考查了二次函数的应用,解题的关键是将二次函数的关系式变形为顶点式.本题属于基础题,难度不大,解决该题型题目时,将函数的关系式进行变换找出顶点坐标即可.
6.(本题3分)(2017·全国·九年级课时练习)在平面直角坐标系中,二次函数()的图象可能是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据二次函数y=a(x-h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.
【详解】
二次函数()的顶点坐标为(h,0),它的顶点坐标在x轴上,
故选D.
7.(本题3分)(2019·浙江·宁波市第七中学九年级阶段练习)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.
其中正确的个数为
A.1 B.2 C.3 D.4
【答案】B
【解析】
【详解】
解:∵函数y=x2+bx+c与x轴无交点,
∴b2﹣4c<0;故①错误.
当x=1时,y=1+b+c=1,故②错误.
∵当x=3时,y=9+3b+c=3,
∴3b+c+6=0.故③正确.
∵当1<x<3时,二次函数值小于一次函数值,
∴x2+bx+c<x,
∴x2+(b﹣1)x+c<0.故④正确.
综上所述,正确的结论有③④两个,
故选B.
8.(本题3分)(2022·浙江·九年级专题练习)已知和均是以为自变量的函数,当时,函数值分别为和,若存在实数,使得,则称函数和具有性质.以下函数和具有性质的是( )
A.和
B.和
C.和
D.和
【答案】A
【解析】
【分析】
根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.
【详解】
解:当时,函数值分别为和,若存在实数,使得,
对于A选项则有,由一元二次方程根的判别式可得:,所以存在实数m,故符合题意;
对于B选项则有,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
对于C选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
对于D选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
故选A.
【点睛】
本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.
9.(本题3分)(2020·浙江省临海市大成中学九年级期中)已知点在抛物线上,则下列结论正确的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
分别计算自变量为1和2对应的函数值,然后对各选项进行判断.
【详解】
当x=1时,y1= (x+1) +2= (1+1) +2= 2;
当x=2时,y= (x+1) +2= (2+1) +2= 7;
所以.
故选A
【点睛】
此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况
10.(本题3分)(2022·浙江·九年级专题练习)已知抛物线与轴的交点为和,点,是抛物线上不同于的两个点,记的面积为的面积为.有下列结论:①当时,;②当时,;③当时,;④当时,.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【答案】A
【解析】
【分析】
通过和的不等关系,确定,在抛物线上的相对位置,逐一分析即可求解.
【详解】
解:∵抛物线与轴的交点为和,
∴该抛物线对称轴为,
当时与当时无法确定,在抛物线上的相对位置,
故①和②都不正确;
当时,比离对称轴更远,且同在x轴上方或者下方,
∴,
∴,故③正确;
当时,即在x轴上到2的距离比到的距离大,且都大于1,
可知在x轴上到2的距离大于1,到2的距离不能确定,
所以无法比较与谁离对称轴更远,故无法比较面积,故④错误;
故选:A.
【点睛】
本题考查二次函数的图象与性质,掌握二次函数的对称性是解题的关键.
二、填空题(共21分)
11.(本题3分)(2018·浙江邵外九年级阶段练习)已知抛物线y=﹣2(x+m)2﹣3,当x≥1时,y随x的增大而减小,那么m的取值范围是_____.
【答案】m≥﹣1
【解析】
【分析】
可先求得抛物线的对称轴,再由条件可求得关于m的不等式,可求得答案.
【详解】
解:∵y=﹣2(x+m)2﹣3,
∴对称轴为x=﹣m,
∵a=﹣2<0,
∴抛物线开口向下,
∴在对称轴右侧y随x的增大而增大,
∵当x≥1时,y随x的增大而减小,
∴﹣m≤1,解得m≥﹣1,
故答案为m≥﹣1.
【点睛】
本题主要考查二次函数的性质,由函数的增减性得到关于m的不等式是解题的关键.
12.(本题3分)(2020·浙江·台州市双语学校九年级期中)点,,均在二次函数的图象上,则,,的大小关系是______.
【答案】
【解析】
【分析】
根据函数解析式的特点,其对称轴为,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,与关于对称轴对称,可判断.
【详解】
解:,
对称轴为,
,在对称轴的右侧,y随x的增大而减小,


根据二次函数图象的对称性可知,与关于对称轴对称,
故,
故答案为.
【点睛】
本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.
13.(本题3分)(2020·浙江·湖州市吴兴区城南实验学校九年级阶段练习)小明在某次投篮中,球的运动路线是抛物线y=-x2+3.5的一部分(如图所示),若命中篮圈中心,则他与篮底的距离l是_____m.
【答案】4
【解析】
【分析】
根据题意可以求得当y=3.05时,抛物线y=-x2+3.5中对应的x的值,从而可以解答本题.
【详解】
将y=3.05代入y=-x2+3.5,得
3.05=-x2+3.5,
解得,x= 1.5(舍去)或x=1.5,
∴若命中篮圈中心,则他与篮底的距离l是:2.5+1.5=4(m),
故答案为:4.
【点睛】
本题考查二次函数的应用.
14.(本题3分)(2020·浙江·九年级期中)若抛物线过点,则_____.
【答案】9
【解析】
【分析】
由题意易得点A、B关于二次函数的对称轴对称,进而可得,然后求解a的值,最后代入二次函数解析式求解b的值即可.
【详解】
解:由抛物线过点,可得:该二次函数的对称轴为直线,点A、B关于二次函数的对称轴对称,
∴,解得:,
把代入抛物线解析式得:,
∴;
故答案为9.
【点睛】
本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.
15.(本题3分)(2022·浙江金华·九年级期末)若二次函数的图象与x轴只有一个公共点,则实数n=______.
【答案】4.
【解析】
【详解】
解:y=x2﹣4x+n中,a=1,b=﹣4,c=n,b2﹣4ac=16﹣4n=0,解得n=4.故答案为4.
16.(本题3分)(2019·浙江嘉兴·九年级阶段练习)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____.
【答案】3
【解析】
【分析】
解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.
【详解】
解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),
∵点A关于点B的对称点为A′,点A′的横坐标为1,
∴点A的坐标为(﹣1,0),
∴抛物线解析式为y=x2+x,
当x=1时,y=x2+x=2,则A′(1,2),
当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),
∴A′C的长为1﹣(﹣2)=3,
故答案为3.
【点睛】
本题考查了二次函数图象上点的坐标特征、坐标平面内关于某点对称的两点间坐标的关系以及抛物线与x轴的交点,解题的关键是把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.
17.(本题3分)(2019·浙江杭州·九年级)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为______.
【答案】8
【解析】
【分析】
如图,过点A作AH⊥BC于H,过点E作EM⊥AB于M,过点C作CN⊥AB于N,根据等腰三角形的性质以及三角形的面积可求出CN=4,继而根据勾股定理求出AN=3,从而求得BN的长,然后证明△EDM≌△DCN,根据全等三角形的性质可得EM=DN,设BD=x,则DN=8-x,继而根据三角形的面积公式可得S△BDE=,根据二次函数的性质即可求得答案.
【详解】
如图,过点A作AH⊥BC于H,过点E作EM⊥AB于M,过点C作CN⊥AB于N,
∵AB=AC=5,BC=4,AH⊥BC,
∴BH=BC=2,
∴AH==,
∵S△ABC=,
即,
∴CN=4,
在Rt△CAN中,∠ANC=90°,∴AN==3,
∴BN=BA+AN=8,
∵四边形CDEF是正方形,
∴∠EDM+∠CDN=∠EDC=90°,ED=CD,
∵∠CDN+∠NCD=90°,
∴∠EDM=∠DCN,
又∵∠EMD=∠DNC=90°,
∴△EDM≌△DCN,
∴EM=DN,
设BD=x,则DN=8-x,
∴S△BDE===,
∵,
∴S△BDE的最大值为8,
故答案为8.
【点睛】
本题考查了等腰三角形的性质,正方形的性质,全等三角形的判定与性质,二次函数的应用等,综合性质较强,有一定的难度,正确添加辅助线,熟练运用相关知识是解题的关键.
三、解答题(共49分)
18.(本题6分)(2019·浙江金华·九年级期中)已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.
(1)若这个函数是一次函数,求m的值;
(2)若这个函数是二次函数,则m的值应怎样?
【答案】(1)、m=0;(2)、m≠0且m≠1.
【解析】
【分析】
根据一次函数与二次函数的定义求解.
【详解】
解:(1)根据一次函数的定义,得:m2﹣m=0
解得m=0或m=1
又∵m﹣1≠0即m≠1;
∴当m=0时,这个函数是一次函数;
(2)根据二次函数的定义,得:m2﹣m≠0
解得m1≠0,m2≠1
∴当m1≠0,m2≠1时,这个函数是二次函数.
【点睛】
考点:二次函数的定义;一次函数的定义
19.(本题8分)(2020·浙江温州·一模)已知,如图,抛物线经过直线与坐标轴的两个交点.此抛物线与轴的另一个交点为.抛物线的顶点为.
求此抛物线的解析式;
若点为抛物线上一动点,是否存在点.使与的面积相等 若存在,求点的坐标;若不存在,请说明理由.
【答案】(1);(2)存在,点的坐标为或或或.
【解析】
【分析】
(1)先求得点A和点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求得b,c的值即可;
(2)设M的坐标为(x,y),由△ACM与△ABC的面积相等可得到|y|=3,将y=3或y= 3代入抛物线的解析式求得对应的x的值,从而得到点M的坐标.
【详解】
由题意得
将点和点的坐标代入得:
解得:
抛物线的解析式为;
设的坐标为.
与的面积相等,

当时,, 解得,
或,
当时, 解得:或
或.
综上所述点的坐标为或或或.
【点睛】
本题主要考查的是二次函数的应用,求得点A和点B的坐标是解答问题(1)的关键,求得点M的纵坐标是解答问题(2)的关键.
20.(本题8分)(2020·浙江·宁波市鄞州区中河街道宋诏桥初级中学一模)已知二次函数y=x2-2x-3.
(1)求图象的开口方向、对称轴、顶点坐标;
(2)求图象与x轴的交点坐标,与y轴的交点坐标;
(3)当x为何值时,y随x的增大而增大?
【答案】(1)图象开口向上;对称轴是x=1,顶点坐标是(1,-4);(2)与y轴交点坐标是(0,-3);与x轴交点的坐标是(3,0)、(-1,0);(3)当时,y随x的增大而增大.
【解析】
【分析】
(1)根据a的符号判断抛物线的开口方向;把抛物线的一般式化为顶点式,根据顶点式可求顶点坐标及对称轴;(2)根据图象与y轴和x轴的相交的特点可求出坐标;(3)根据二次函数的增减性,当a>0时,在对称轴的右侧,y随x的增大而增大,由此即可解答;
【详解】
(1)∵a=1>0,∴图象开口向上;
∵y=x2-2x-3=(x-1)2-4,
∴对称轴是x=1,顶点坐标是(1,-4);
(2)由图象与y轴相交则x=0,代入得:y=-3,
∴与y轴交点坐标是(0,-3);
由图象与x轴相交则y=0,代入得:x2-2x-3=0,
解方程得x=3或x=-1,
∴与x轴交点的坐标是(3,0)、(-1,0);
(3)当时,y随x的增大而增大.
【点睛】
本题考查了二次函数的性质与图象,熟记二次函数的图象和性质是解决问题的关键.
21.(本题8分)(2020·浙江·乐清市英华学校九年级阶段练习)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
【答案】(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.
【解析】
【分析】
(1)待定系数法列方程组求一次函数解析式.
(2)根据(1)中解析式,列一元二次方程求解.
(3)总利润=单件利润销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.
【详解】
(1)设y与x的函数关系式为y=kx+b.
把(22,36)与(24,32)代入,得
解得,
∴y=-2x+80(20≤x≤28).
(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,
根据题意,得:(x-20)y=150,即(x-20)(-2x+80)=150.
解得x1=25,x2=35(舍去).
答:每本纪念册的销售单价是25元.
(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.
∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,
∴当x=28时,w最大=-2×(28-30)2+200=192(元).
答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.
22.(本题9分)(2019·浙江·杭州外国语学校一模)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D,
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
【答案】(1)抛物线的解析式为y=﹣x2+2x+3.(2)证明见解析;(3)点P坐标为(,)或(2,3).
【解析】
【详解】
试题分析:(1)将A(﹣1,0)、C(0,3),代入二次函数y=ax2+bx﹣3a,求得a、b的值即可确定二次函数的解析式;(2)分别求得线段BC、CD、BD的长,利用勾股定理的逆定理进行判定即可;(3)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.
试题解析:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴将A(﹣1,0)、C(0,3),代入,得,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,连接DC、BC、DB,由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)y=﹣x2+2x+3对称轴为直线x=1.假设存在这样的点P,①以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,(不满足在对称轴右侧应舍去),∴x=,∴y=4﹣x=,即点P1坐标为(,).②以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).
考点:1.二次函数图象性质;2.等腰三角形性质;3.直角三角形的判定.
23.(本题10分)(2020·浙江·高照实验学校九年级阶段练习)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【解析】
【分析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②PB=PC;③BP=BC;分别根据这三种情况求出点P的坐标;
(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【详解】
解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,
解得:b=﹣4,c=3,
∴二次函数的表达式为:y=x2﹣4x+3;
(2)令y=0,则x2﹣4x+3=0,
解得:x=1或x=3,
∴B(3,0),
∴BC=3,
点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
∴P1(0,3+3),P2(0,3﹣3);
②当PB=PC时,OP=OB=3,
∴P3(0,-3);
③当BP=BC时,
∵OC=OB=3
∴此时P与O重合,
∴P4(0,0);
综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);
(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,
∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
试卷第1页,共3页
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
保密★启用前
2022-2023学年浙江九年级数学上册第1章《二次函数》常考题精选
学校:___________姓名:___________班级:___________考号:___________
注意事项∶
1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 所有答案都必须写到答题卷上。选择题必须使用2B铅笔填涂;非选择题必须使用黑色字迹的签字笔或钢笔书写,字体要工整,笔迹要清楚。21cnjy.com
3.本试卷分试题卷和答题卷两部分,满分100分。考试时间共90分钟。
一、单选题(共30分)
1.(本题3分)(2019·浙江·长兴县实验中学九年级期中)若关于x的函数y=(2﹣a)x2﹣x是二次函数,则a的取值范围是( )
A.a≠0 B.a≠2 C.a<2 D.a>2
2.(本题3分)(2020·浙江·九年级期末)抛物线y=3(x﹣2)2+5的顶点坐标是(  )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
3.(本题3分)(2020·浙江省温岭市第四中学九年级期中)对于二次函数y=2(x﹣2)2+1,下列说法中正确的是(  )
A.图象的开口向下 B.函数的最大值为1
C.图象的对称轴为直线x=﹣2 D.当x<2时y随x的增大而减小
4.(本题3分)(2020·浙江·浣江教育九年级期中)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).
A.; B.;
C.; D..
5.(本题3分)(2020·浙江温州·九年级阶段练习)烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为(  )
A.3s B.4s C.5s D.10s
6.(本题3分)(2017·全国·九年级课时练习)在平面直角坐标系中,二次函数()的图象可能是( )
A. B. C. D.
7.(本题3分)(2019·浙江·宁波市第七中学九年级阶段练习)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.
其中正确的个数为
A.1 B.2 C.3 D.4
8.(本题3分)(2022·浙江·九年级专题练习)已知和均是以为自变量的函数,当时,函数值分别为和,若存在实数,使得,则称函数和具有性质.以下函数和具有性质的是( )
A.和
B.和
C.和
D.和
9.(本题3分)(2020·浙江省临海市大成中学九年级期中)已知点在抛物线上,则下列结论正确的是( )
A. B. C. D.
10.(本题3分)(2022·浙江·九年级专题练习)已知抛物线与轴的交点为和,点,是抛物线上不同于的两个点,记的面积为的面积为.有下列结论:①当时,;②当时,;③当时,;④当时,.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
二、填空题(共21分)
11.(本题3分)(2018·浙江邵外九年级阶段练习)已知抛物线y=﹣2(x+m)2﹣3,当x≥1时,y随x的增大而减小,那么m的取值范围是_____.
12.(本题3分)(2020·浙江·台州市双语学校九年级期中)点,,均在二次函数的图象上,则,,的大小关系是______.
13.(本题3分)(2020·浙江·湖州市吴兴区城南实验学校九年级阶段练习)小明在某次投篮中,球的运动路线是抛物线y=-x2+3.5的一部分(如图所示),若命中篮圈中心,则他与篮底的距离l是_____m.
14.(本题3分)(2020·浙江·九年级期中)若抛物线过点,则_____.
15.(本题3分)(2022·浙江金华·九年级期末)若二次函数的图象与x轴只有一个公共点,则实数n=______.
16.(本题3分)(2019·浙江嘉兴·九年级阶段练习)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____.
17.(本题3分)(2019·浙江杭州·九年级)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为______.
三、解答题(共49分)
18.(本题6分)(2019·浙江金华·九年级期中)已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.
(1)若这个函数是一次函数,求m的值;
(2)若这个函数是二次函数,则m的值应怎样?
19.(本题8分)(2020·浙江温州·一模)已知,如图,抛物线经过直线与坐标轴的两个交点.此抛物线与轴的另一个交点为.抛物线的顶点为.
求此抛物线的解析式;
若点为抛物线上一动点,是否存在点.使与的面积相等 若存在,求点的坐标;若不存在,请说明理由.
20.(本题8分)(2020·浙江·宁波市鄞州区中河街道宋诏桥初级中学一模)已知二次函数y=x2-2x-3.
(1)求图象的开口方向、对称轴、顶点坐标;
(2)求图象与x轴的交点坐标,与y轴的交点坐标;
(3)当x为何值时,y随x的增大而增大?
21.(本题8分)(2020·浙江·乐清市英华学校九年级阶段练习)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
22.(本题9分)(2019·浙江·杭州外国语学校一模)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D,
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
23.(本题10分)(2020·浙江·高照实验学校九年级阶段练习)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
试卷第1页,共3页
21世纪教育网(www.21cnjy.com)