第一章《三角形的初步认识》 高频考点精选精练(含解析)

文档属性

名称 第一章《三角形的初步认识》 高频考点精选精练(含解析)
格式 docx
文件大小 573.6KB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2022-07-21 12:50:49

图片预览

文档简介

第一章《三角形的初步认识》
一、单选题
1.如图,点在的延长线上,于点,交于点.若,则的度数为( ).
A.65° B.70° C.75° D.85°
2.等腰三角形有两条边长为5cm和9cm,则该三角形的周长是
A.19cm B.23cm C.19cm或23cm D.18cm
3.若中,,则一定是( )
A.锐角三角形 B.钝角三角形 C.直角三角形 D.任意三角形
4.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在的两边、上分别在取,移动角尺,使角尺两边相同的刻度分别与点、重合,这时过角尺顶点的射线就是的平分线.这里构造全等三角形的依据是( )
A. B. C. D.
5.如图,与交于点,,则的度数为(  )
A. B. C. D.
6.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( )
A. B. C.10 D.8
7.如图,AE是△ABC的中线,D是BE上一点,若EC=6,DE=2,则BD的长为( )
A.4 B.3 C.2 D.1
8.如图,与相交于点O,,不添加辅助线,判定的依据是( )
A. B. C. D.
9.如图,在中,,,,,连接BC,CD,则的度数是(  )
A.45° B.50° C.55° D.80°
10.如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°; ②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论有( )个
A.2 B.3 C.4 D.5
二、填空题
11.如图,沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,AD与CE相交于点F,若,,,则________.
12.如图,若△ABC≌△ADE,且∠1=35°,则∠2=_____.
13.下列说法:(1)两点之间的所有连线中,线段最短;(2)相等的角是对顶角;(3)过一点有且仅有一条直线与已知直线平行;(4)长方体是四棱柱.其中正确的有______(填正确说法的序号).
14.已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为__________.
15.已知三条不同的直线a、b、c在同一平面内,下列四个命题:①如果ab,a⊥c,那么b⊥c;②如果ba,ca,那么bc;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么bc.其中是假命题的是__________.(填序号)
16.如图,已知AC与BF相交于点E,ABCF,点E为BF中点,若CF=8,AD=5,则BD=_____.
17.如图,的度数为___________.
三、解答题
18.如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.
(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;
(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).
19.一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.
20.在四边形ABCD中,,.
(1)如图①,若,求出的度数;
(2)如图②,若的角平分线交AB于点E,且,求出的度数;
(3)如图③,若和的角平分线交于点E,求出的度数.
21.如图,在中,且,点是斜边的中点,E、F分别是AB、AC边上的点,且.连接.
(1)求证:;
(2)如图,若,,则的面积为________.
22.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC,BC于点M、N.
(1)如图1,若∠BAC=112°,求∠EAN的度数;
(2)如图2,若∠BAC=82°,求∠EAN的度数;
(3)若∠BAC=α(α≠90°),直接写出用α表示∠EAN大小的代数式.
23.如图,在中,,的垂直平分线分别交、于点D、E,的垂直平分线分别交、于点F、G.求的周长.
中小学教育资源及组卷应用平台
试卷第1页,共3页
21世纪教育网(www.21cnjy.com)
参考答案:
1.B
【解析】
【分析】
根据题意于点,交于点,则,即
【详解】
解:∵
∴,
∴.
故选B.
【点睛】
本题考查垂直的性质,解题关键在于在证明
2.C
【解析】
【分析】
根据周长的计算公式计算即可.(三角形的周长等于三边之和.)
【详解】
根据三角形的周长公式可得:C=5+5+9=19或C=9+9+5=23.
【点睛】
本题主要考查等腰三角形的性质,关键在于本题没有说明那个长是等腰三角形的腰,因此要分类讨论.
3.B
【解析】
【分析】
根据三角形内角和180,求出最大角∠C,直接判断即可.
【详解】
解:∵∠A:∠B:∠C=1:2:4.
∴设∠A=x°,则∠B=2x°,∠C=4x°,
根据三角形内角和定理得到:x+2x+4x=180,
解得:x=.
则∠C=4×= °,则△ABC是钝角三角形.
故选B.
【点睛】
本题考查了三角形按角度的分类.
4.D
【解析】
【分析】
根据全等三角形的判定条件判断即可.
【详解】
解:由题意可知
在中
∴(SSS)

∴就是的平分线
故选:D
【点睛】
本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.
5.A
【解析】
【分析】
先根据三角形的内角和定理可求出,再根据平行线的性质即可得.
【详解】
故选:A.
【点睛】
本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键.
6.A
【解析】
【分析】
连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.
【详解】
解:如图,连结AE,
设AC交EF于O,
依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,
所以,△OAF≌△OCE(ASA),
所以,EC=AF=5,
因为EF为线段AC的中垂线,
所以,EA=EC=5,
又BE=3,由勾股定理,得:AB=4,
所以,AC=
【点睛】
本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.
7.A
【解析】
【分析】
根据三角形中线定义得BE=EC=6,再由BD=BE-DE求解即可.
【详解】
解:∵AE是△ABC的中线,EC=6,
∴BE=EC=6,
∵ DE=2,
∴BD=BE﹣DE=6﹣2=4,
故选:A.
【点睛】
本题考查了三角形的中线,熟知三角形的中线定义是解答的关键.
8.B
【解析】
【分析】
根据,,正好是两边一夹角,即可得出答案.
【详解】
解:∵在△ABO和△DCO中,,
∴,故B正确.
故选:B.
【点睛】
本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.
9.B
【解析】
【分析】
连接AC并延长交EF于点M.由平行线的性质得,,再由等量代换得,先求出即可求出.
【详解】
解:连接AC并延长交EF于点M.







故选B.
【点睛】
本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.
10.B
【解析】
【分析】
①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.
②正确.证明△ABP≌△FBP,推出PA=PF,再证明△APH≌△FPD,推出PH=PD即可解决问题.
③错误.利用反证法,假设成立,推出矛盾即可.
④错误,可以证明S四边形ABDE=2S△ABP.
⑤正确.由DH∥PE,利用等高模型解决问题即可.
【详解】
解:在△ABC中,AD、BE分别平分∠BAC、∠ABC
∵∠ACB=90°
∴∠A+∠B=90°
又∵AD、BE分别平分∠BAC、∠ABC
∴∠BAD+∠ABE=(∠A+∠B)=45°
∴∠APB=135°,故①正确
∴∠BPD=45°
又∵PF⊥AD
∴∠FPB=90°+45°=135°
∴∠APB=∠FPB
又∵∠ABP=∠FBP
BP=BP
∴△ABP≌△FBP(ASA)
∴∠BAP=∠BFP,AB=FB,PA=PF
在△APH和△FPD中
∴△APH≌△FPD(ASA)
∴PH=PD
∴AD=AP+PD=PF+PH.故②正确
∵△ABP≌△FBP,△APH≌△FPD
∴S△APB=S△FPB,S△APH=S△FPD,PH=PD
∵∠HPD=90°
∴∠HDP=∠DHP=45°=∠BPD
∴HD∥EP
∴S△EPH=S△EPD
∴S△APH=S△AED,故⑤正确
∵S四边形ABDE=S△ABP+S△AEP+S△EPD+S△PBD
=S△ABP+(S△AEP+S△EPH)+S△PBD
=S△ABP+S△APH+S△PBD
=S△ABP+S△FPD+S△PBD
=S△ABP+S△FBP
=2S△ABP,故④不正确
若DH平分∠CDE,则∠CDH=∠EDH
∵DH∥BE
∴∠CDH=∠CBE=∠ABE
∴∠CDE=∠ABC
∴DE∥AB,这个显然与条件矛盾,故③错误
故选B.
【点睛】
本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
11.123
【解析】
【分析】
根据折叠前后对应角相等和三角形内角和定理可得∠BAD=∠BAC=133°,∠ACE=∠ACB=29°,再求出∠DAC,根据三角形外角的性质可求得m.
【详解】
解:∵,,
∴∠BAC=180°-18°-29°=133°,
∵沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,
∴∠BAD=∠BAC=133°,∠ACE=∠ACB=29°,
∴∠DAC=360°-∠BAD-∠BAC=94°,
∴∠CFD=∠ACE+∠DAC=29°+94°=123°,即m=123,
故答案为:123.
【点睛】
本题考查三角形内角和定理和外角定理,折叠的性质.理解折叠前后对应角相等是解题关键.
12.35°.
【解析】
【分析】
根据全等的性质可得:∠EAD=∠CAB,再根据等式的基本性质可得∠1=∠2=35°.
【详解】
解:∵△ABC≌△ADE,
∴∠EAD=∠CAB,
∴∠EAD-∠CAD=∠CAB-∠CAD,
∴∠2=∠1=35°.
故答案为35°.
【点睛】
此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.
13.(1)、(4).
【解析】
【分析】
根据所学公理和性质解答即可.
【详解】
解:(1)两点之间的所有连线中,线段最短,故本说法正确;
(2)相等的角不一定是对顶角,但对顶角相等,故本说法错误;
(3)应为过直线外一点有且仅有一条直线与已知直线平行,故本说法错误;
(4)长方体是四棱柱,正确.
故答案为(1)、(4).
【点睛】
本题是对数学语言的严谨性的考查,记忆数学公理、性质概念等一定要做的严谨.
14.或
【解析】
【分析】
以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,则OP为的平分线,以OP为边作,则为作或的角平分线,即可求解.
【详解】
解:以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,
以大于MN的长度为半径作弧,两弧在内交于点P,得到OP为的平分线,
再以OP为边作,则为作或的角平分线,
所以或.
故答案为:或.
【点睛】
本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP为边作的两种情况,避免遗漏.
15.③
【解析】
【分析】
根据平行线的性质,判定及基本事实进行判断.
【详解】
①如果a∥b,a⊥c,那么b⊥c,是真命题;
②如果b∥a,c∥a,那么b∥c,是真命题;
③如果b⊥a,c⊥a,那么b∥c,则原命题是假命题;
④如果b⊥a,c⊥a,那么b∥c,是真命题.
故答案为:③.
【点睛】
本题考查真假命题的判断,熟练掌握平行线的基本事实及判定是解题的关键.
16.3
【解析】
【分析】
利用全等三角形的判定定理和性质定理可得结果.
【详解】
解:∵AB∥CF,
∴∠A=∠FCE,
∠B=∠F,
∵点E为BF中点,
∴BE=FE,
在△ABE与△CFE中,

∴△ABE≌△CFE(AAS),
∴AB=CF=8,
∵AD=5,
∴BD=3,
故答案为:3.
【点睛】
本题主要考查了全等三角形的判定定理和性质定理,熟练掌握定理是解答此题的关键.
17.
【解析】
【分析】
根据全等三角形的性质求出∠EAD=∠CAB,求出∠DAB=∠EAC =50°,即可得到∠BAC的度数.
【详解】
解:∵ABC≌ADE,
∴∠EAD=∠CAB,
∴∠EAD﹣∠CAD=∠CAB﹣∠CAD,
∴∠EAC=∠DAB,
∵∠EAB=125°,∠CAD=25°,
∴∠DAB=∠EAC=(125°﹣25°)=50°,
∴∠BAC=50°+25°=75°.
故答案为:75°.
【点睛】
本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.
18.(1)60°;(2)β-α.
【解析】
【分析】
(1)根据平行线的性质和平角的定义可得∠EBC=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;
(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.
【详解】
解:(1)∵EF∥BC,∠BEF=120°,
∴∠EBC=60°,∠AEF=60°,
又∵BD平分∠EBC,
∴∠EBD=∠BDE=∠DBC=30°,
又∵∠BDA=90°,
∴∠EDA=60°,
∴∠BAD=60°;
(2)如图2,过点A作AG∥BC,
则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,
则∠FAD+∠C=β-∠DBC=β-∠ABC=β-α.
【点睛】
考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键.
19.不合格,理由见解析
【解析】
【分析】
延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
【详解】
解:如图,延长BD与AC相交于点E.
∵是的一个外角,,,
∴,
同理可得
∵李师傅量得,不是115°,
∴这个零件不合格.
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
20.(1)
(2)
(3)
【解析】
【分析】
(1)利用四边形内角和进行角的计算即可;
(2)利用四边形内角和及角平分线的计算得出,再由三角形外角的性质求解即可;
(3)利用角平分线得出,,结合三角形内角和定理即可得出结果.
(1)
解:∵四边形的内角和是360°,,



(2)
∵,,
∴,
∵CE平分



(3)
∵BE,CE分别平分和
∴,

∴在中,.
【点睛】
题目主要考查四边形内角和及平行线的性质,角平分线的定义,三角形内角和定理等,理解题意,熟练掌握运用这些知识点是解题关键.
21.(1)见解析;(2).
【解析】
【分析】
(1)易证∠ADE=∠CDF,即可证明△ADE≌△CDF;
(2)由(1)可得AE=CF,BE=AF,,再根据△DEF的面积=,即可解题.
【详解】
(1)证明:∵AB=AC,D是BC中点,
∴∠BAD=∠C=45°,AD=BD=CD,
∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
∴△ADE≌△CDF(ASA).
(2)解:∵△ADE≌△CDF
∴AE=CF=5,BE=AF=12,AB=AC=17,


∴△DEF的面积=.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADE≌△CDF是解题的关键.
22.(1)∠EAN=44°;(2)∠EAN=16°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.
【解析】
【分析】
(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC﹣(∠BAE+∠CAN)代入数据进行计算即可得解;
(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN﹣∠BAC代入数据进行计算即可得解;
(3)根据前两问的求解方法,分0°<α<90°与180°>α>90°两种情况解答.
【详解】
解:(1)∵DE垂直平分AB,
∴AE=BE,
∴∠BAE=∠B,
同理可得:∠CAN=∠C,
∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,
=∠BAC﹣(∠B+∠C),
在△ABC中,∠B+∠C=180°﹣∠BAC=68°,
∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=112°﹣68°=44°;
(2)∵DE垂直平分AB,
∴AE=BE,
∴∠BAE=∠B,
同理可得:∠CAN=∠C,
∴∠EAN=∠BAE+∠CAN﹣∠BAC,
=(∠B+∠C)﹣∠BAC,
在△ABC中,∠B+∠C=180°﹣∠BAC=98°,
∴∠EAN=∠BAE+∠CAN﹣∠BAC=98°﹣82°=16°;
(3)当0°<α<90°时,
∵DE垂直平分AB,
∴AE=BE,
∴∠BAE=∠B,
同理可得:∠CAN=∠C,
∴∠
在△ABC中,∠
∴∠
当180°>α>90°时,
∵DE垂直平分AB,
∴AE=BE,
∴∠BAE=∠B,
同理可得:∠CAN=∠C,
∴∠
在△ABC中,∠
所以,当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.
【点睛】
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键.
23.10
【解析】
【分析】
根据线段垂直平分线的性质可得,据此即可求解.
【详解】
解:∵是的垂直平分线,
∴,
∵是的垂直平分线,
∴,
∴的周长.
【点睛】
此题主要考查了线段垂直平分线的性质等几何知识,线段垂直平分线上的点到线段两端点的距离相等.
答案第1页,共2页