第2章 简单事件的概率单元测试题(原卷版+解析版)

文档属性

名称 第2章 简单事件的概率单元测试题(原卷版+解析版)
格式 zip
文件大小 2.0MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2022-07-25 11:32:32

文档简介

中小学教育资源及组卷应用平台
第2章 简单事件的概率 单元测试
一、单选题
1.下列事件,是随机事件的是( )
A.任意画一个三角形其内角和是360°
B.长度为1,2,3的三条线段可以围成一个三角形
C.3人分成两组一定有2人分在一组
D.掷一次骰子,向上一面点数等于1
2.不透明的袋子中装有标号为1,2,2,3,3,3的完全相同的六个小球,从中任意摸出一个球,则( )
A.摸到标号为1的球的可能性最大
B.摸到标号为2的球的可能性最大
C.摸到标号为3的球的可能性最大
D.摸到标号为1,2,3的球的可能性一样大
3.某人在做掷硬币试验时,抛掷m次,正面朝上有n次,则即正面朝上的频率是P=,下列说法中正确的是(  )
A.P一定等于
B.抛掷次数逐渐增加,P稳定在附近
C.多抛掷一次,P更接近
D.硬币正面朝上的概率是
4.为了疫情防控,某小区需要从甲、乙、丙、丁 4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是( )
A. B. C. D.
5.小军旅行箱的密码是一个六位数(密码的每位数字通常用0,1,2,3,4,5,6,7,8,9这十个数字),由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )
A. B. C. D.
6.已知一次函数,从2,-3中随机取一个值,从1,-1,-2中随机取一个值,则该一次函数的图象经过第二、三、四象限的概率为( )
A. B. C. D.
7.如图,正方形及其内切圆,随机地往正方形内投一粒米,落在阴影部分的概率是( )
A. B. C. D.
8.在一次数学活动课上,王老师将1~8共八个整数依次写在八张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲、乙、丙、丁四位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:12;乙:11;丙:9;丁:4,则拿到数字5的同学是( )
A.甲 B.乙 C.丙 D.丁
9.某批羽毛球的质量检验结果如下:
抽取的羽毛球数a 100 200 400 600 800 1000 1200
优等品的频数b 93 192 380 561 752 941 1128
优等品的频率 0.930 0.960 0.950 0.935 0.940 0.941 0.940
小明估计,从这批羽毛球中任意抽取的一只羽毛球是优等品的概率是0.94.下列说法中,正确的是( )A.如果继续对这批羽毛球进行质量检验,优等品的频率将在0.94附近摆动
B.从这批羽毛球中任意抽取一只,一定是优等品
C.从这批羽毛球中任意抽取50只,优等品有47只
D.从这批羽毛球中任意抽取1100只,优等品的频率在0.940~0.941的范围内
10.在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点).开始时,骰子如图(1)所示摆放,朝上的点数是2,最后翻动到如图(2)所示位置.现要求翻动次数最少,则最后骰子朝上的点数为2的概率为( )
A. B. C. D.
二、填空题
11.“任意画一个菱形,它的对角线互相垂直”是______事件(填“随机”、“不可能”或“必然”).
12.在如图所示的转盘中,转出的可能性最大的颜色是________.
13.在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是________.
14.如图“3×3”网格中,有3个涂成黑色的小方格,若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称的概率是________.
15.小颖有两根长度为4cm和9cm的木棒,她想钉一个三角形的木框,现在有5根木棒供她选择,其长度分别为3cm,5cm,10cm,12cm,17cm.小颖随手拿了一根,恰好能够组成一个三角形的概率为_____.
16.绿化公司对某种花苗移植的成活率进行调查,结果如表所示:
移植总数(n) 400 750 1500 3500 7000 9000 10000
成活数(m) 369 662 1335 3203 6335 8073 9013
成活的频率 0.923 0.883 0.890 0.915 0.905 0.897 0.901
根据表中数据,估计这种花苗移植的成活概率为______.(精确到0.1)
17.现有1,2,3,…,9九个数字,甲、乙轮流从中选出一个数字,从左至右依次填入下图所示的表格中(表中已出现的数字不再重复使用),每次填数时,甲会选择填入后使表中现有数据平均数最大的数字,乙会选择填入后使表中现有数据中位数最小的数字.如图,若表中第一个数字是4,甲先填,则满足条件的填法有______种,请你在表中空白处填出一种符合要求的填数结果.
4
18.有五张正面分别写有数字-4,-3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为,则抽取的既能使关于的方程有实数根,又能使以为自变量的二次函数,当时,随的增大而减小的概率为_______.
三、解答题
19.指出下列事件中,哪些是必然事件,哪些是不可能事件.
①两条平行线被第三条直线所截,同位角相等;
②367人中至少有2人的生日相同;
③没有水分,种子也会发芽;
④某运动员百米赛跑的成绩是;
⑤同种电荷相互排斥;
⑥通常情况下,高铁比普通列车快;
⑦用长度分别为3 cm,5 cm,8 cm的三条线段能围成一个三角形.
20.在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?
(1)从口袋中任取出一个球,它恰是红球;
(2)从口袋中一次性任意取出2个球,它们恰好全是白球;
(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球.
21.甲乙两校分别有一男一女共4名教师报名参加双减工作.
(1)若从甲乙两校报名的教师中分别随机选1名,求所选的2名教师性别相同的概率.
(2)若从报名的4名教师中随机选2名,求两名教师来自同一所学校的概率.
22.国宝大熊猫作为体育盛会的吉祥物见证了祖国的日益强大.从1990年北京亚运会的“盼盼”,到2008年北京奥运会的“福娃晶晶”,再到北京冬奥会的“冰墩墩”.现在将4张卡片(如图,分别记为A、B、C、D)背面朝上洗匀,这些卡片除图案外其余均相同.
(1)小明从中随机抽取1张,抽到冰墩墩的概率为______;
(2)小明从中随机抽取2张,抽取规则为:先随机抽取1张不放回,再随机抽取1张.请利用树状图或列表法求出小明抽取的2张卡片都是冰墩墩的概率.
23.小明和小亮两位同学做掷骰子(质地均匀的正方体)游戏,他们共做了100次试验,结果如下:
朝上的点数 1 2 3 4 5 6
出现的次数 16 14 25 20 12 13
(1)计算“1点朝上”的频率和“6点朝上”的频率;
(2)小亮说:“若投掷1000次,则出现4点朝上的次数正好是200次”.小亮的说法正确吗?为什么?
(3)小明将这枚骰子任意投掷一次,求朝上的点数大于或等于4的概率.
24.小明听说小张和小李两位好朋友利用星期天到河岸边清理垃圾,参加保护环境志愿者服务活动,也临时参加,活动结束后,有赞助商赠送两个书包作为奖品,小明提出:用抓阄的方式来确定书包归属,将写有A、B、C三张相同的纸片,标有A、B的有奖品,标有C的无奖品,折叠成外表完全一样的纸团搅匀,每人抓一个,小李提出异议说:谁先抓对谁有利,认为这个方法不公平.而小张、小明则认为:先抓后抓一个样.你认为抓阄这个方法公平吗?用学过的概率知识进行说明.
25.如图,两个转盘A、B都被分成3个全等的扇形,每个扇形内均标有不同的自然数,固定指针,同时转动转盘A、B,两个转盘停止后观察两个指针所指的数字(若指针指在扇形的分界线上时,视为指向分界线左边的扇形).
(1)用列表法(或树状图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果.
(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数和频率如下表:
转动转盘总次数 10 20 30 50 100 150 180 240 330 450
“和为7”出现的频数 2 7 10 16 34 50 59 80 110 150
“和为7”出现的频率 0.2 0.35 0.33 0.32 0.34 0.33 0.33 0.33 0.33 0.33
请你根据上表数据,估计“和为7”的概率是多少?
(3)根据(1)(2),若,试求出x和y的值.
26.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马,田忌也有上、中、下三匹马,且这六匹马在比赛中的胜负可用不等式表示如下:(注:表示A马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵()获得了整场比赛的胜利,创造了以弱胜强的经典案例.
假设齐王事先不打探田忌的“出马”情况,试回答以下问题:
(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;
(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第2章 简单事件的概率 单元测试
一、单选题
1.下列事件,是随机事件的是( )
A.任意画一个三角形其内角和是360°
B.长度为1,2,3的三条线段可以围成一个三角形
C.3人分成两组一定有2人分在一组
D.掷一次骰子,向上一面点数等于1
【答案】D
【提示】
根据随机事件,必然事件,不可能事件的特点判断即可.
【解答】
解:A.任意画一个三角形其内角和是360°,这是不可能事件,故A不符合题意;
B.长度为1,2,3的三条线段可以围成一个三角形,这是不可能事件,故B不符合题意;
C.3人分成两组一定有2人分在一组,这是必然事件,故B不符合题意;
D.掷一次骰子,向上一面点数等于1,这是随机事件,故D符合题意;
故选:D.
【点睛】
本题考查了随机事件,熟练掌握随机事件,必然事件,不可能事件的特点是解题的关键.
2.不透明的袋子中装有标号为1,2,2,3,3,3的完全相同的六个小球,从中任意摸出一个球,则( )
A.摸到标号为1的球的可能性最大
B.摸到标号为2的球的可能性最大
C.摸到标号为3的球的可能性最大
D.摸到标号为1,2,3的球的可能性一样大
【答案】C
【提示】
根据题意得到相应的可能性,然后再比较即可.
【解答】
解:摸到标号为1的球的可能性为,
摸到标号为2的球的可能性为,
摸到标号为3的球的可能性为,
∵,
∴摸到标号为3的球的可能性最大.
故选:C.
【点睛】
本题考查的是对可能性大小的判断,解决这类题目要注意具体情况具体对待,用到的知识点为:可能性等于所求情况数与总情况数之比.
3.某人在做掷硬币试验时,抛掷m次,正面朝上有n次,则即正面朝上的频率是P=,下列说法中正确的是(  )
A.P一定等于
B.抛掷次数逐渐增加,P稳定在附近
C.多抛掷一次,P更接近
D.硬币正面朝上的概率是
【答案】B
【提示】
根据频率估计概率分别进行判断.
【解答】
解:某人在做掷硬币实验时,抛掷m次,正面朝上的有n次(即正面朝上的频率P=,),则抛掷次数逐渐增加时,p稳定在左右.
故选B.
【点睛】
本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
4.为了疫情防控,某小区需要从甲、乙、丙、丁 4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是( )
A. B. C. D.
【答案】A
【提示】
根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.
【解答】
解:画树状图得:
∴一共有12种情况,抽取到甲的有6种,
∴P(抽到甲)= .
故选:A.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
5.小军旅行箱的密码是一个六位数(密码的每位数字通常用0,1,2,3,4,5,6,7,8,9这十个数字),由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )
A. B. C. D.
【答案】D
【提示】
由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.
【解答】
解:∵一共有10种等可能的结果0,1,2,3,4,5,6,7,8,9,小军能一次打开该旅行箱的只有1种情况,
∴小军能一次打开该旅行箱的概率是:.
故选:D.
【点睛】
此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
6.已知一次函数,从2,-3中随机取一个值,从1,-1,-2中随机取一个值,则该一次函数的图象经过第二、三、四象限的概率为( )
A. B. C. D.
【答案】A
【提示】
根据已知画出树状图,再利用一次函数的性质该一次函数的图象经过二、三、四象限时,k<0,b<0,即可得出答案.
【解答】
解:根据题意,画出树状图,如下:
∵该一次图数的图象经过二、三、四象限时,k<0,b<0,
∴当k=-3,b=-1时或当k=-3,b=-2时符合要求,
∴该一次函数的图象经过二、三、四象限的概率为.
故选:A
【点睛】
此题主要考查了一次函数的性质以及树状图法求概率,熟练地应用一次函数知识得出k,b的符号是解决问题的关键.
7.如图,正方形及其内切圆,随机地往正方形内投一粒米,落在阴影部分的概率是( )
A. B. C. D.
【答案】B
【提示】
设正方形的边长为a,则其内切圆的直径为a,分别求出正方形和阴影部分的面积,再利用面积比求出概率,即可.
【解答】
解:设正方形的边长为a,则其内切圆的直径为a,
∴其内切圆的半径为,正方形的面积为a2,
∴阴影部分的面积为,
∴随机地往正方形内投一粒米,落在阴影部分的概率是.
故选:B
【点睛】
本题考查了几何概型的概率计算,关键是明确几何测度,利用面积比求之.
8.在一次数学活动课上,王老师将1~8共八个整数依次写在八张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲、乙、丙、丁四位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:12;乙:11;丙:9;丁:4,则拿到数字5的同学是( )
A.甲 B.乙 C.丙 D.丁
【答案】B
【提示】
根据两数之和结果确定,对两个加数的不同情况进行分类讨论,列举出所有可能的结果后,再逐一根据条件进行推理判断,最后确定出正确结果即可.
【解答】
解:由题意可知,一共八张卡片八个数,四个人每人两张卡片,
∴每人手里的数字不重复.
由甲:12,可知甲手中的数字可能是4和8,5和7;
由乙:11,可知乙手中的数字可能3和8;4和7,5和6;
由丙:9,可知丙手中的数字可能是1和8,2和7,3和6,4和5;
由丁:4,可知丁手中的数字可能是1和3,
∴丁只能是1和3,
因为甲手中的数字可能是4和8,5和7;
所以乙不能是4和7,则只能是5和6,
故选B.
【点睛】
本题考查了列举所有可能性,关键是把所有可能的结果列举出来,再进行推理.
9.某批羽毛球的质量检验结果如下:
抽取的羽毛球数a 100 200 400 600 800 1000 1200
优等品的频数b 93 192 380 561 752 941 1128
优等品的频率 0.930 0.960 0.950 0.935 0.940 0.941 0.940
小明估计,从这批羽毛球中任意抽取的一只羽毛球是优等品的概率是0.94.下列说法中,正确的是( )A.如果继续对这批羽毛球进行质量检验,优等品的频率将在0.94附近摆动
B.从这批羽毛球中任意抽取一只,一定是优等品
C.从这批羽毛球中任意抽取50只,优等品有47只
D.从这批羽毛球中任意抽取1100只,优等品的频率在0.940~0.941的范围内
【答案】A
【提示】
根据频数和频率的关系进行判断即可
【解答】
A. 如果继续对这批羽毛球进行质量检验,优等品的频率将在0.94附近摆动,故此选项正确;
B. 从这批羽毛球中任意抽取一只,不一定是优等品,故此选项错误;
C. 从这批羽毛球中任意抽取50只,优等品有不一定为47只,故此选项错误;
D. 从这批羽毛球中任意抽取1100只,优等品的频率不一定在0.940~0.941的范围内,故此选项错误.
故选:A.
【点睛】
本题主要考查利用频率估计概率的知识,熟练掌握利用频率估计概率的知识是解题的关键.
10.在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点).开始时,骰子如图(1)所示摆放,朝上的点数是2,最后翻动到如图(2)所示位置.现要求翻动次数最少,则最后骰子朝上的点数为2的概率为( )
A. B. C. D.
【答案】C
【提示】
根据题意模拟骰子的翻动过程,可以得到最后骰子朝上的点数所有的可能性和点数为2的基本事件的个数,代入概率公式即可.
【解答】
设三行三列的方格棋盘的格子坐标为,其中开始时骰子所处的位置为,则图题(2)所示的位置为,则从到且次数翻动最少,共有6种走法,最后骰子朝上的点数分别为2,5,1,5,3,2,故最后骰子朝上的点数为2的概率为,故选C.
【点睛】
本题主要考查概率,根据已知条件计算出骰子朝上的点数所有的基本事件和满足条件的基本事件个数是关键.
二、填空题
11.“任意画一个菱形,它的对角线互相垂直”是______事件(填“随机”、“不可能”或“必然”).
【答案】必然
【提示】
根据菱形的性质、必然事件的概念解答即可.
【解答】
解:菱形的对角线互相垂直且平分,
“任意画一个菱形,它的对角线互相垂直”是必然事件.
故答案为:必然.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.解题的关键是掌握必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
12.在如图所示的转盘中,转出的可能性最大的颜色是________.
【答案】黄色
【提示】
判断颜色面积最大的为转出的可能性最大的颜色.
【解答】
因为黄色所占的区域最大,
∴转出的可能性最大的颜色是黄色,
故答案为:黄色.
【点睛】
本题考查了可能性的大小问题,解题关键是理解题意,确定出哪种颜色所占面积最大.
13.在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是________.
【答案】##
【提示】
根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
【解答】
解:∵不透明袋子中装有5个球,其中有2个红球、3个白球,
∴从袋子中随机取出1个球,则它是红球的概率是,
故答案为:.
【点睛】
本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.
14.如图“3×3”网格中,有3个涂成黑色的小方格,若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称的概率是________.
【答案】
【提示】
根据轴对称的性质设计出图案即可.
【解答】
解:如图,∵可选4个方格,
∴完成的图案为轴对称图案的概率=,
故答案为:.
【点睛】
本题考查的是利用轴对称设计图案和概率公式,熟知轴对称的性质是解答此题的关键.
15.小颖有两根长度为4cm和9cm的木棒,她想钉一个三角形的木框,现在有5根木棒供她选择,其长度分别为3cm,5cm,10cm,12cm,17cm.小颖随手拿了一根,恰好能够组成一个三角形的概率为_____.
【答案】##
【提示】
根据三角形的三边关系求出第三边的长度范围,然后找出与原来的木棒能够钉成三角形的木棒,最后根据概率公式即可求出结果.
【解答】
解:∵三角形中任意两边之和要大于第三边,任意两边之差小于第三边,
∴要想与两根长度为4cm和9cm的木棒钉一个三角形的木框,第三边c的长度范围是:,
∴只有取到10cm或12cm的木棒才可以与4cm和9cm的木棒钉成一个三角形木框,
∵随手拿了一根,有五种情况,
∴小明随手拿了一根,恰好能够组成一个三角形的概率为:.
故答案为:.
【点睛】
本题主要考查了三角形的三边关系和概率公式的应用,根据三角形三边关系求出第三边长的取值范围,是解题的关键.
16.绿化公司对某种花苗移植的成活率进行调查,结果如表所示:
移植总数(n) 400 750 1500 3500 7000 9000 10000
成活数(m) 369 662 1335 3203 6335 8073 9013
成活的频率 0.923 0.883 0.890 0.915 0.905 0.897 0.901
根据表中数据,估计这种花苗移植的成活概率为______.(精确到0.1)
【答案】0.9
【提示】
通过表格及用频率估计概率可直接得出答案
【解答】
解:由频率分布表可看到成活的频率稳定在0.9附近,
∴用频率估计概率可知成活的概率约为0.9.
故答案为:0.9.
【点睛】
本题考查用频率估计概率,读懂表格是解题关键.
17.现有1,2,3,…,9九个数字,甲、乙轮流从中选出一个数字,从左至右依次填入下图所示的表格中(表中已出现的数字不再重复使用),每次填数时,甲会选择填入后使表中现有数据平均数最大的数字,乙会选择填入后使表中现有数据中位数最小的数字.如图,若表中第一个数字是4,甲先填,则满足条件的填法有______种,请你在表中空白处填出一种符合要求的填数结果.
4
【答案】6,9182
【提示】
根据填数时,甲会选择填入后使表中现有数据平均数最大的数字,可知,甲每次都会选最大的数字;再根据乙选择数字的方法判断满足条件的填法即可.
【解答】
解:∵甲会选择填入后使表中现有数据平均数最大的数字,表中第一个数字是4,甲先填,
∴第二个数字为9,第四个数字为8,
∵乙会选择填入后使表中现有数据中位数最小的数字.
∴第三个数字可以为1,2,3,第五个数字可以为1,2,且不能与第三个数字相同,即第三个数字有3种选法,第五个数字有2种选法,
∴满足条件的填法有6种,表中空白处可以为9182.
故答案为:6,9182
【点睛】
本题考查概率的知识,解题的关键是理解甲选数字的方法,乙选数字的方法,根据其选数字的方法知道其所选数字.
18.有五张正面分别写有数字-4,-3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为,则抽取的既能使关于的方程有实数根,又能使以为自变量的二次函数,当时,随的增大而减小的概率为_______.
【答案】
【提示】
根据方程有实数根列出关于n的不等式,再根据二次函数的图象列出关于n的不等式,从而求出n的取值范围,找出符合条件的整数解,最后根据概率公式进行计算即可.
【解答】
有实数根,

∴,

又,
对称轴为:,
时,随增大而减小,

综上,
可取0,2,
∴,
故答案为:.
【点睛】
此题考查二次函数的性质及概率公式,得到满足条件的n的情况数是解决本题的关键.
三、解答题
19.指出下列事件中,哪些是必然事件,哪些是不可能事件.
①两条平行线被第三条直线所截,同位角相等;
②367人中至少有2人的生日相同;
③没有水分,种子也会发芽;
④某运动员百米赛跑的成绩是;
⑤同种电荷相互排斥;
⑥通常情况下,高铁比普通列车快;
⑦用长度分别为3 cm,5 cm,8 cm的三条线段能围成一个三角形.
【答案】必然事件:①②⑤⑥;不可能事件:③④⑦
【提示】
根据随机事件、必然事件以及不可能事件的定义即可作出判断.
【解答】
解:①两条平行线被第三条直线所截,同位角相等,是必然事件;
②367人中至少有2人的生日相同,是必然事件;
③没有水分,种子也会发芽,是不可能事件;
④某运动员百米赛跑的成绩是,是不可能事件,;
⑤同种电荷相互排斥,是必然事件;
⑥通常情况下,高铁比普通列车快,是必然事件;
⑦用长度分别为,,的三条线段能围成一个三角形,是不可能事件;
∴必然事件:①②⑤⑥;
不可能事件:③④⑦.
【点睛】
此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
20.在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?
(1)从口袋中任取出一个球,它恰是红球;
(2)从口袋中一次性任意取出2个球,它们恰好全是白球;
(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球.
【答案】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.
【提示】
根据必然事件、不可能事件、随机事件的概念可判断它们分别属于那一种类别.
【解答】
(1)可能发生,因为袋中有红球;
(2)可能发生,因为袋中刚好有2个白球;
(3)不可能发生,因为袋中只有2个白球,取不出3个白球.
【点睛】
解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
21.甲乙两校分别有一男一女共4名教师报名参加双减工作.
(1)若从甲乙两校报名的教师中分别随机选1名,求所选的2名教师性别相同的概率.
(2)若从报名的4名教师中随机选2名,求两名教师来自同一所学校的概率.
【答案】(1)
(2)
【提示】
(1)利用已知条件可知一共有4种结果数,所选的2名教师性别相同的只有2种情况,然后利用概率公式可求出结果.
(2)根据题意可知此事件是抽取不放回,列出树状图,求出所有的可能的结果数及两名教师来自同一所学校的情况数,然后利用概率公式可求出结果.
(1)
解:若从甲乙两校报名的教师中分别随机选1名,所选的2名教师性别相同的概率为=;
(2)
解:把甲校一男一女2名老师记为A、B,乙校一男一女2名老师记为C、D,
画树状图如下:
共有12种等可能的结果,其中两名教师来自同一所学校的结果有4种,
∴两名教师来自同一所学校的概率为=.
【点睛】
本题考查了列表法与树状图法;简单事件概率的计算,掌握求概率的方法是解题的关键.
22.国宝大熊猫作为体育盛会的吉祥物见证了祖国的日益强大.从1990年北京亚运会的“盼盼”,到2008年北京奥运会的“福娃晶晶”,再到北京冬奥会的“冰墩墩”.现在将4张卡片(如图,分别记为A、B、C、D)背面朝上洗匀,这些卡片除图案外其余均相同.
(1)小明从中随机抽取1张,抽到冰墩墩的概率为______;
(2)小明从中随机抽取2张,抽取规则为:先随机抽取1张不放回,再随机抽取1张.请利用树状图或列表法求出小明抽取的2张卡片都是冰墩墩的概率.
【答案】(1);
(2)
【提示】
(1)直接利用概率公式求解即可;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
(1)
解:小明从中随机抽取1张,抽到冰墩墩的概率为;
故答案为:;
(2)
盼盼和福娃晶晶分别用A、B表示,2张冰墩墩用C表示,
列表如下:
A B C C
A BA CA CA
B AB CB CB
C AC BC CC
C AC BC CC
由表可知,共有12种等可能的结果,其中小明抽取的2张卡片都是冰墩墩的结果有2种,
则小明抽取的2张卡片都是冰墩墩的概率是.
答:小明抽取的2张卡片都是冰墩墩的概率是.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
23.小明和小亮两位同学做掷骰子(质地均匀的正方体)游戏,他们共做了100次试验,结果如下:
朝上的点数 1 2 3 4 5 6
出现的次数 16 14 25 20 12 13
(1)计算“1点朝上”的频率和“6点朝上”的频率;
(2)小亮说:“若投掷1000次,则出现4点朝上的次数正好是200次”.小亮的说法正确吗?为什么?
(3)小明将这枚骰子任意投掷一次,求朝上的点数大于或等于4的概率.
【答案】(1)“1点朝上”的频率和“6点朝上”的频率分别为
(2)小亮的说法不正确,理由见解析
(3)
【提示】
(1)由共做了100次试验,“1点朝上”和“6点朝上”的次数分别为16,13,即可求得“1点朝上”的频率和“6点朝上”的频率.
(2)由一次试验中的频率不能等于概率,可得这位同学的说法不正确;
(3)利用概率公式即可求得答案.
(1)
解:“1点朝上”的频率为:16÷100=0.16;
“6点朝上”的频率为13÷100=0.13;
(2)
小亮的判断依据是:(次),依据是错误的;
因为只有当试验的次数足够大时,该事件发生的频率才稳定在事件发生的概率附近;
所以小亮的判断是错误的.
(3)
任意投掷一枚骰子,一共有6种等可能结果,其中大于或等于4一共有3种情况,
∴P(朝上的点数大于或等于4)=.
【点睛】
本题考查了利用频率估计概率,概率公式,解题的关键是掌握试验中的概率等于所求情况数与总情况数之比;实际概率是经过多次试验后得到的一个接近值.
24.小明听说小张和小李两位好朋友利用星期天到河岸边清理垃圾,参加保护环境志愿者服务活动,也临时参加,活动结束后,有赞助商赠送两个书包作为奖品,小明提出:用抓阄的方式来确定书包归属,将写有A、B、C三张相同的纸片,标有A、B的有奖品,标有C的无奖品,折叠成外表完全一样的纸团搅匀,每人抓一个,小李提出异议说:谁先抓对谁有利,认为这个方法不公平.而小张、小明则认为:先抓后抓一个样.你认为抓阄这个方法公平吗?用学过的概率知识进行说明.
【答案】抓阄这个方法公平,理由见解析
【提示】
根据概率公式计算即可.
【解答】
解:抓阄这个方法公平,理由如下,
根据题意,将写有A、B、C三张相同的纸片,标有A、B的有奖品,标有C的无奖品,
∴先抓后抓的获得奖品的概率都是,
∴抓阄这个方法公平.
【点睛】
本题考查了游戏的公平性,正确地利用概率公式计算概率是解题的关键.
25.如图,两个转盘A、B都被分成3个全等的扇形,每个扇形内均标有不同的自然数,固定指针,同时转动转盘A、B,两个转盘停止后观察两个指针所指的数字(若指针指在扇形的分界线上时,视为指向分界线左边的扇形).
(1)用列表法(或树状图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果.
(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数和频率如下表:
转动转盘总次数 10 20 30 50 100 150 180 240 330 450
“和为7”出现的频数 2 7 10 16 34 50 59 80 110 150
“和为7”出现的频率 0.2 0.35 0.33 0.32 0.34 0.33 0.33 0.33 0.33 0.33
请你根据上表数据,估计“和为7”的概率是多少?
(3)根据(1)(2),若,试求出x和y的值.
【答案】(1)见解析;
(2)0.33;
(3)x=1,y=6
【提示】
(1)由于是两步操作,适合用列表法或树状图法,用列表法表示即可;
(2)用“和为7”的频率估计概率;
(3)根据“和为7”的概率估算出表中和为7的数字的个数,再推出x、y的值.
(1)
解:列表为:
(2)
解:由于出现“和为7”的频率稳定在0.33附近,
故出现“和为7”的概率为0.33.
(3)
解:“和为7”的概率为0.33,表中共九种情况,
“和为7”的情况有9×0.33≈3种,
由于2、5;3、4;之和为7,
所以x、5;x、4;x、y;2、y;3、y中有一组“和为7”即可.
又由于0<x<y,所以
①x+5=7,x=2,y=3,6,7,8,9
②x+4=7,x=3,y=6,7,8,9
③x+y=7,x=1,y=6;
④2+y=7,y=5,x=4,1;
⑤3+y=7,y=4,x=1.
由于在每一个扇形内均标有不同的自然数,故只有③成立,
故x=1,y=6.
【点睛】
本题考查了列表法、利用频率估计概率等知识,掌握列表法、频率与概率的关系及用频率估计出事件的个数是解题的关键.
26.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马,田忌也有上、中、下三匹马,且这六匹马在比赛中的胜负可用不等式表示如下:(注:表示A马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵()获得了整场比赛的胜利,创造了以弱胜强的经典案例.
假设齐王事先不打探田忌的“出马”情况,试回答以下问题:
(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;
(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.
【答案】(1)田忌首局应出“下马”才可能在整场比赛中获胜,;(2)不是,田忌获胜的所有对阵是,,,,,,
【提示】
(1)通过理解题意分析得出结论,通过列举法求出获胜的概率;
(2)通过列举齐王的出马顺序和田忌获胜的对阵,求出概率.
【解答】
(1)田忌首局应出“下马”才可能在整场比赛中获胜.
此时,比赛的所有可能对阵为:
,,
,,共四种.
其中田忌获胜的对阵有
,,共两种,
故此时田忌获胜的概率为.
(2)不是.
齐王的出马顺序为时,田忌获胜的对阵是;
齐王的出马顺序为时,田忌获胜的对阵是;
齐王的出马顺序为时,田忌获胜的对阵是;
齐王的出马顺序为时,田忌获胜的对阵是;
齐王的出马顺序为时,田忌获胜的对阵是;
齐王的出马顺序为时,田忌获胜的对阵是.
综上所述,田忌获胜的所有对阵是
,,,
,,.
齐王的出马顺序为时,比赛的所有可能对阵是
,,,
,,,
共6种,同理,齐王的其他各种出马顺序,也都分别有相应的6种可能对阵,
所以,此时田忌获胜的概率.
【点睛】
本小题考查简单随机事件的概率等基础知识,考查推理能力、应用意识,考查统计与概率思想;通过列举所有对阵情况,求得概率是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)