中小学教育资源及组卷应用平台
【浙教版九年级数学上册每周一练】01 二次函数3
选择题:(本题共10小题,每小题3分,共30分)
温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!
1.抛物线y=2(x+9)2﹣3的顶点坐标是( )
A.(9,﹣3) B.(﹣9,﹣3) C.(9,3) D.(﹣9,3)
2.二次函数y=(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过( )
A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限
3.已知抛物线y=(x﹣2)2+1,下列结论错误的是( )
A.抛物线开口向上 B.抛物线的对称轴为直线x=2
C.抛物线的顶点坐标为(2,1) D.当x<2时,y随x的增大而增大
4.已知二次函数y=2x2﹣4x﹣1在0≤x≤a时,y取得的最大值为15,则a的值为( )
A.1 B.2 C.3 D.4
5.已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=﹣1,且经过点(﹣3,0),则下列结论正确的是( )
A.b>0 B.c<0 C.a+b+c>0 D.3a+c=0
6.小嘉说:将二次函数y=x2的图象平移或翻折后经过点(2,0)有4种方法:
①向右平移2个单位长度;②向右平移1个单位长度,再向下平移1个单位长度
③向下平移4个单位长度;④沿x轴翻折,再向上平移4个单位长度,你认为小嘉说的方法中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
7.已知抛物线y=ax2+bx+c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc>0; ②2c﹣3b<0; ③5a+b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1<y2<y3.其中正确结论的个数有( )
A.1 B.2 C.3 D.4
8.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
x ﹣2 ﹣1 0 1
y 0 4 6 6
下列结论不正确的是( )
A.抛物线的开口向下 B.抛物线的对称轴为直线
C.抛物线与x轴的一个交点坐标为(2,0) D.函数y=ax2+bx+c的最大值为
9.已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为( )
A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2
10.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为x=﹣1,函数最大值为4,结合图象给出下列结论:①b=2a;②﹣3<a<﹣2;③4ac﹣b2<0;④若关于x的一元二次方程ax2+bx+a=m﹣4(a≠0)有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
填空题(本题共6小题,每题4分,共24分)
温馨提示:填空题必须是最简洁最正确的答案!
11.一个二次函数,当自变量时,函数值,且过点和点,则这个二次函数的解析式为________________
12.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降 米,水面宽8米.
13.如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点A,B,则此抛物线的解析式为__________________
14.把二次函数y=x2+4x+m的图象向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件:
15.抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是________________
16.如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D(m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为
三.解答题(共6题,共66分)
温馨提示:解答题应将必要的解答过程呈现出来!
17(本题6分)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).
(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.
18(本题8分)已知二次函数y=x2-2x-3.(1)求图象的开口方向、对称轴、顶点坐标;
(2)求图象与x轴的交点坐标,与y轴的交点坐标;(3)当x为何值时,y随x的增大而增大?
19.(本题8分)已知,如图,抛物线经过直线与坐标轴的两个交点.此抛物线与轴的另一个交点为.抛物线的顶点为.(1)求此抛物线的解析式;
(2)若点为抛物线上一动点,是否存在点.使与的面积相等 若存在,求点的坐标;若不存在,请说明理由.
20(本题10分)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.
(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;
(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
21.(本题10分)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;
(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围
22(本题12分).如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.(1)求抛物线的解析式;
(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;
(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;
(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
23.(本题12分)如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.(1)求二次函数的解析式和直线的解析式;
(2)点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;
(3)在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
【浙教版九年级数学上册每周一练】01 二次函数3答案
选择题:(本题共10小题,每小题3分,共30分)
温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!
1.答案:B
解析:∵y=2(x+9)2﹣3,
∴抛物线顶点坐标为(﹣9,﹣3),
故选择:B.
2.答案:D
解析:∵y=(x+m)2+n,
∴抛物线顶点坐标为(﹣m,n),
∵抛物线顶点在第四象限,
∴m<0,n<0,
∴直线y=mx+n经过第二,三,四象限,
故选择:D.
3.答案:D
解析:A选项,∵a=1>0,
∴抛物线开口向上,故该选项不符合题意;
B选项,抛物线的对称轴为直线x=2,故该选项不符合题意;
C选项,抛物线的顶点坐标为(2,1),故该选项不符合题意;
D选项,当x<2时,y随x的增大而减小,故该选项符合题意;
故选择:D.
4.答案;D
解sr :∵二次函数y=2x2﹣4x﹣1=2(x﹣1)2﹣3,
∴抛物线的对称轴为x=1,顶点(1,﹣3),
∴当y=﹣3时,x=1,
当y=15时,2(x﹣1)2﹣3=15,
解得x=4或x=﹣2,
∵当0≤x≤a时,y的最大值为15,
∴a=4,
故选择:D.
5.答案:D
解析:选项A:∵抛物线开口向下,
∴a<0.
∵对称轴为直线x=﹣1,
∴.
∴b=2a.
∴b<0.故选项A错误;
选项B:设抛物线与x轴的另一个交点为(x1,0),
则抛物线的对称轴可表示为x=(x1﹣3),
∴﹣1=(x1﹣3),解得x1=1,
∴抛物线与x轴的两个交点为(1,0)和(﹣3,0).
又∵抛物线开口向下,
∴抛物线与y轴交于正半轴.
∴c>0.故选项B错误.
选项C:∵抛物线过点(1,0).
∴a+b+c=0.故选项C错误;
选项D:∵b=2a,且a+b+c=0,
∴3a+c=0.故选项D正确.
故选择:D.
6.答案:D
解析:①向右平移2个单位长度,则平移后的解析式为y=(x﹣2)2,当x=2时,y=0,所以平移后的抛物线过点(2,0),故①符合题意;
②向右平移1个单位长度,再向下平移1个单位长度,则平移后的解析式为y=(x﹣1)2﹣1,当x=2时,y=0,所以平移后的抛物线过点(2,0),故②符合题意;
③向下平移4个单位长度,则平移后的解析式为y=x2﹣4,当x=2时,y=0,所以平移后的抛物线过点(2,0),故③符合题意;
④沿x轴翻折,再向上平移4个单位长度,则平移后的解析式为y=﹣x2+4,当x=2时,y=0,所以平移后的抛物线过点(2,0),故④符合题意;
故选择:D.
7.答案:B
解析:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴是直线x=1,
∴,
∴b=﹣2a,
∴b<0,
∵抛物线交y轴于负半轴,
∴c<0,
∴abc>0,故①正确,
∵抛物线y=ax2﹣2ax+c经过(3,0),
∴9a﹣6a+c=0,
∴c=﹣3a,
∴2c﹣3b=﹣6a+6a=0,故②错误,
5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,
观察图象可知,y1<y2<y3,故④正确,
故选择:B.
8.答案:C
解析:由表格可得,
,
解得,
∴,
∴该抛物线的开口向下,故选项A正确,不符合题意;
该抛物线的对称轴是直线x=,故选项B正确,不符合题意,
∵当x=﹣2时,y=0,
∴当x=×2﹣(﹣2)=3时,y=0,故选项C错误,符合题意;
函数y=ax2+bx+c的最大值为,故选项D正确,不符合题意;
故选择:C.
9.答案:A
解析:∵抛物线y=mx2﹣2m2x+n(m≠0),
∴该抛物线的对称轴为直线,
∵当x1+x2>4且x1<x2时,都有y1<y2,
∴当m>0时,
0<2m≤4,
解得0<m≤2;
当m<0时,
2m>4,
此时m无解;
由上可得,m的取值范围为0<m≤2,
故选择:A.
10.答案:B
解析:∵抛物线对称轴为直线,
∴b=2a,①正确.
∵抛物线经过(﹣1,4),
∴a﹣b+c=﹣a+c=4,
∴a=c﹣4,
∵抛物线与y轴交点在(0,1)与(0,2)之间,
∴1<c<2,
∴﹣3<a<﹣2,②正确.
∵抛物线与x轴有2个交点,
∴b2﹣4ac>0,即4ac﹣b2<0,③正确.
∵a=c﹣4,
∴ax2+bx+a=m﹣4可整理为ax2+bx+c=m,
∵抛物线开口向下,顶点坐标为(﹣1,4),
∴m<4时,抛物线与直线y=m有两个不同交点,④错误.
由图象可得x<﹣1时y随x增大而增大,
∴⑤错误.
故选择:B.
填空题(本题共6小题,每题4分,共24分)
温馨提示:填空题必须是最简洁最正确的答案!
11.答案:
解析:依题意,设函数解析式为
∵当自变量时,函数值
∴,解得
∴函数的解析式为
故答案为:.
12.答案:
解析:以水平面所在的直线AB为x轴,以过拱顶C且垂直于AB的直线为y轴建立平面直角坐标系,O为原点,
由题意可得:AO=OB=3米,C坐标为(0,2),
通过以上条件可设顶点式y=ax2+2,
把A点坐标(﹣3,0)代入抛物线解析式得,
9a+2=0,
解得:a=,
所以抛物线解析式为y=x2+2,
当x=4时,y=×16+2=﹣,
∴水面下降米,
故答案为:.
13.答案:
解析:∵四边形ABCD为平行四边形
∴CD=AB=4
∴C点坐标为
∴A点坐标为,B点坐标为
设函数解析式为,代入C点坐标有
解得
∴函数解析式为,即
故答案为.
14.答案:
解析:∵把二次函数y=x2+4x+m=(x+2)2+m﹣4的图象向上平移1个单位长度,再向右平移3个单位长度,
∴平移后的解析式为:y=(x+2﹣3)2+m﹣4+1,
∴平移后的解析式为:y=x2﹣2x+m﹣2,
∴对称轴为直线x=1,
∵平移后所得抛物线与坐标轴有且只有一个公共点,
∴Δ=4﹣4(m﹣2)<0,
∴m>3,
故答案为:m>3.
15.答案:
解析:∵抛物线开口向上,
∴a>0,
∵抛物线对称轴在y轴左侧,
∴,
∴b>0,
∵抛物线经过(0,﹣2),
∴c=﹣2,
∵抛物线经过(1,0),
∴a+b+c=0,
∴a+b=2,b=2﹣a,
∴y=ax2+(2﹣a)x﹣2,
当x=﹣1时,y=a+a﹣2﹣2=2a﹣4,
∵b=2﹣a>0,
∴0<a<2,
∴﹣4<2a﹣4<0,
故答案为:﹣4<m<0.
16.答案:(﹣5,﹣4)或(0,1).
解析:把点D(m,m+1)代入抛物线y=﹣x2﹣6x﹣5中得:
m+1=﹣m2﹣6m﹣5,
解得:m1=﹣1,m2=﹣6,
∴D(﹣1,0)或(﹣6,﹣5),
当y=0时,﹣x2﹣6x﹣5=0,
∴x=﹣1或﹣5,
∴A(﹣5,0),B(﹣1,0),
当x=0时,y=﹣5,
∴OC=OA=5,
∴△AOC是等腰直角三角形,
∴∠OAC=45°,
①如图1,D(﹣1,0),此时点D与B重合,连接AD',
∵点D与D'关于直线AC对称,
∴AC是BD的垂直平分线,
∴AB=AD'=﹣1﹣(﹣5)=4,且∠OAC=∠CAD'=45°,
∴∠OAD'=90°,
∴D'(﹣5,﹣4);
②如图2,D(﹣6,﹣5),
∵点D(m,m+1),
∴点D在直线y=x+1上,此时直线y=x+1过点B,
∴BD⊥AC,即D'在直线y=x+1上,
∵A(﹣5,0),C(0,﹣5),
则直线AC的解析式为:y=﹣x﹣5,
∵﹣x﹣5=x+1,
∴x=﹣3,
∴E(﹣3,﹣2),
∵点D与D'关于直线AC对称,
∴E是DD'的中点,
∴D'(0,1),
综上,点D关于直线AC的对称点的坐标为(﹣5,﹣4)或(0,1).
故答案为:(﹣5,﹣4)或(0,1).
三.解答题(共6题,共66分)
温馨提示:解答题应将必要的解答过程呈现出来!
17.解析:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,
解得m1=1,m2=﹣3,
又∵m>0,
∴m=1.
(2)∵m=1,
∴y=x2+x﹣2,
∵Δ=b2﹣4ac=12+8=9>0,
∴二次函数图象与x轴有2个交点.
18.解析:(1)∵a=1>0,∴图象开口向上;
∵y=x2-2x-3=(x-1)2-4,
∴对称轴是x=1,顶点坐标是(1,-4);
(2)由图象与y轴相交则x=0,代入得:y=-3,
∴与y轴交点坐标是(0,-3);
由图象与x轴相交则y=0,代入得:x2-2x-3=0,
解方程得x=3或x=-1,
∴与x轴交点的坐标是(3,0)、(-1,0);
(3)当时,y随x的增大而增大.
19.解析:由题意得
将点和点的坐标代入得:
解得:
抛物线的解析式为;
设的坐标为.
与的面积相等,
.
当时,, 解得,
或,
当时, 解得:或
或.
综上所述点的坐标为或或或.
20.解析:(1)根据题意得:y=8.2﹣0.2(x﹣1)=﹣0.2x+8.4,
答:这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式为y=﹣0.2x+8.4;
(2)设李大爷每天所获利润是w元,
由题意得:w=[12﹣0.5(x﹣1)﹣(﹣.02x+8.4)]×10x=﹣3x2+41x=﹣3(x﹣)2+
∵﹣3<0,x为正整数,且|6﹣|>|7﹣|,
∴x=7时,w取最大值,最大值为﹣3×(7﹣)2+=140(元),
答:李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元.
21.解析:(1)将点(1,m),N(3,n)代入抛物线解析式,
∴,
∵m=n,
∴a+b+c=9a+3b+c,整理得,b=﹣4a,
∴抛物线的对称轴为直线;
∴t=2,
∵c=2,
∴抛物线与y轴交点的坐标为(0,2).
(2)∵m<n<c,
∴a+b+c<9a+3b+c<c,
解得﹣4a<b<﹣3a,
∴3a<﹣b<4a,
∴,即.
当t=时,x0=2;
当t=2时,x0=3.
∴x0的取值范围2<x0<3.
22.解析:(1) 抛物线过点,
解得:
抛物线解析式为.
(2) 点,
∴抛物线对称轴为直线
点在直线上,点,关于直线对称
,
当点、、在同一直线上时,最小.
抛物线解析式为,
∴C(0,-6),
设直线解析式为
,
解得:
直线:
,
,
故答案为:.
(3)过点作轴于点,交直线与点,
设,则
,
当时,面积最大为
,
此时点坐标为.
(4)存在点,使以点、、、为顶点的四边形是平行四边形.
设N(x,y),M(,m),
①四边形CMNB是平行四边形时,CM∥NB,CB∥MN,
,
∴x= ,
∴y= = ,
∴N(,);
②四边形CNBM是平行四边形时,CN∥BM,CM∥BN,
,
∴x=,
∴y==
∴N(,);
③四边形CNMB是平行四边形时,CB∥MN,NC∥BM,
,
∴x=,
∴y==
∴N(,);
点坐标为(,),(,),(,).
23.解析:抛物线的顶点的坐标为,
可设抛物线解析式为,
点在该抛物线的图象上,
,解得,
抛物线解析式为,即,
点在轴上,令可得,
点坐标为,
可设直线解析式为,
把点坐标代入可得,解得,
直线解析式为;
设点横坐标为,则,,
,
当时,有最大值;
如图,过作轴交于点,交轴于点,作于,
设,则,
,
是等腰直角三角形,
,
,
当中边上的高为时,即,
,
,
当时,,方程无实数根,
当时,解得或,
或,
综上可知存在满足条件的点,其坐标为或.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)