专题2.7 探索勾股定理 2022-2023学年八年级上册数学同步培优题库+知识清单(浙教版)(解析卷+原卷)

文档属性

名称 专题2.7 探索勾股定理 2022-2023学年八年级上册数学同步培优题库+知识清单(浙教版)(解析卷+原卷)
格式 zip
文件大小 4.6MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2022-08-28 10:05:52

文档简介

中小学教育资源及组卷应用平台
专题2.7 探索勾股定理
模块一:知识清单
1、勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.
要点: (1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.
2、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中,所以.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
图(2)中,所以.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以.
3、勾股定理的逆定理
如果三角形的三条边长,满足,那么这个三角形是直角三角形.
要点:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形. (2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.
模块二:同步培优题库
全卷共24题 测试时间:80分钟 试卷满分:100分
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2022·福建福州市·八年级期中)△ABC三边分别为a、b、c,下列能说明△ABC是直角三角形的是( )
A.b2=a2﹣c2 B.a∶b∶c=1∶2∶2
C.2∠C=∠A+∠B D.∠A∶∠B∶∠C=3∶4∶5
【答案】A
【分析】根据勾股定理逆定理及三角形内角和可进行排除选项.
【详解】解:A、由可根据勾股定理逆定理得△ABC是直角三角形,故符合题意;
B、由a∶b∶c=1∶2∶2可得,则△ABC是等腰三角形,故不符合题意;
C、由2∠C=∠A+∠B结合三角形内角和可得∠C=60°,但不能判定△ABC是直角三角形,故不符合题意;
D、由∠A∶∠B∶∠C=3∶4∶5结合三角形内角和可得,所以△ABC不是直角三角形;故选A.
【点睛】本题主要考查勾股定理逆定理及三角形内角和,熟练掌握勾股定理逆定理及三角形内角和是解题的关键.
2.(2022·武汉市黄陂区教学研究室八年级期末)图1是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如图2中的,按此规律,在线段,,,…中, 长度为整数的线段有( )条.
A.3 B.4 C.5 D.6
【答案】B
【分析】=1,==,==,找到=的规律即可计算到中长度为正整数的个数.
【详解】解:找到=的规律,所以到的值分别为,,……,
故正整数为=1,=2,=3,=4.故选:B.
【点睛】本题考查了勾股定理的灵活运用,本题中找到=的规律是解题的关键.
3.(2021·江苏八年级专题练习)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是( )
A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤13
【答案】A
【分析】最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.
【详解】解:由题意可得:a的最小长度为饮料罐的高,即为12,
当吸管斜放时,如图,此时a的长度最大,即为AB,
∵下底面半径是5,∴AB==13,∴a的取值范围是12≤a≤13,故选A
【点睛】本题考查正确运用勾股定理.主要运用勾股定理求得a的最大值,此题比较常见,难度不大.
4.(2022·山东八年级期末)如图,在△ABC中,CE平分∠ACB,CF平分△ABC的外角∠ACD,且EF∥BC交AC于M,若CM=4,则CE2+CF2的值为(  )
A.8 B.16 C.32 D.64
【答案】D
【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE2+CF2=EF2,即可得出结果.
【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,
即∠ECF=(∠ACB+∠ACD)=90°,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,
由勾股定理得:CE2+CF2=EF2=64,故选:D.
【点睛】本题考查角平分线的定义、勾股定理、直角三角形的判定;熟练掌握勾股定理,证明三角形是直角三角形是解决问题的关键.
5.(2022·浙江金华初三月考)如图,圆柱底面半径为cm,高为18cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为(  )
A.24cm B.30cm C.2cm D.4cm
【答案】B
【分析】要求圆柱体中两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.
【解析】解:圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为cm,∴长方形的宽即是圆柱体的底面周长:2π×=8cm;
又∵圆柱高为18cm,∴小长方形的一条边长是6cm;
根据勾股定理求得AC=CD=DB=10cm;∴AC+CD+DB=30cm;故选:B.
【点睛】本题主要考查了圆柱的计算、平面展开 路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.
6.(2022·浙江八年级期中)如图,已知,且,, ,则A,F两点间的距离是( )
A.14 B. C. D.10
【答案】D
【分析】过点F作FG⊥AB交AB的延长线于点G,根据题意求出AG、FG,根据勾股定理计算,得到答案.
【详解】解:过点F作FG⊥AB交AB的延长线于点G,
则AG=AB+CD+EF=8,FG=BC+DE=6,由勾股定理得,AF==10,故选D.
【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
7.(2022·江西省初二月考)在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积是
A.126 cm2 或66 cm2 B.66 cm2 C.120 cm2 D.126cm2
【答案】A
【分析】此题分两种情况:∠B为锐角或∠B为钝角已知AB、AC的值,利用勾股定理即可求出BC的长,利用三角形的面积公式得结果.
【解析】当∠B为锐角时(如图1),
在Rt△ABD中, cm,
在Rt△ADC中, cm,∴BC=21,
∴S△ABC= BC AD=×21×12=126cm2;
当∠B为钝角时(如图2),在Rt△ABD中, cm,
在Rt△ADC中, cm,
∴BC=CD-BD=16-5=11cm,∴S△ABC=BC AD=×11×12=66cm2;故答案为:126或66.
【点睛】本题主要考查了勾股定理和三角形的面积公式,画出图形,分类讨论是解答此题的关键.
8.(2022·云南九年级模拟)如图是按照一定规律“生长”的“勾股树”:
经观察可以发现:图(1)中共有3个正方形,图(2)在图(1)的基础上增加了4个正方形,图(3)在图(2)的基础上增加了8个正方形,……,照此规律“生长”下去,图(6)应在图(5)的基础上增加的正方形的个数是( )
A.12 B.32 C.64 D.128
【答案】C
【分析】通过观察已知图形可以发现:图(2)比图(1)多出4个正方形,图(3)比图(2)多出8个正方形,图(4)比图(3)多出16个正方形,……,以此类推可得图形的变换规律.
【详解】解:由题可得,图(2)比图(1)多出4个正方形,
图(3)比图(2)多出8个正方形, ;
图(4)比图(3)多出16个正方形, ;
图(5)比图(4)多出32个正方形, ;
照此规律,图(n)比图(n-1)多出正方形的个数为:
故图(6)比图(5)多出正方形的个数为:;故答案为:C.
【点睛】此题考查了图形的变化类问题,主要考核学生的观察能力和空间想象能力.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
9.(2022·浙江九年级)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若,则S2的值是( )
A.9 B.8 C.7 D.6
【答案】C
【分析】根据图形的特征得出线段之间的关系,进而利用勾股定理求出各边之间的关系,从而得出答案.
【详解】∵图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,
∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2=CG2+DG2+2CG DG=GF2+2CG DG,S2=GF2,
S3=(NG﹣NF)2=NG2+NF2﹣2NG NF,
∵S1+S2+S3=21=GF2+2CG DG+GF2+NG2+NF2﹣2NG NF=3GF2,∴S2的值是:7.故选:C.
【点睛】此题主要考查了勾股定理的应用,根据已知得出S1+S2+S3=21=GF2+2CG DG+GF2+NG2+NF2﹣2NG NF=3GF2是解决问题的关键.
10.(2021·江苏西附初中八年级月考)如图,中,,,,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于点E、F,则线段的长为( )
A. B. C. D.
【答案】A
【分析】根据折叠的性质可知AC=CD,∠A=∠CDE,CE⊥AB,Rt△ABC中根据勾股定理求得AB=5,再根据三角形的面积可求得B′F的长.
【详解】解:∵Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,
根据折叠的性质可知AC=CD,∠A=∠CDE,CE⊥AB,
∴B′D=BC﹣CD=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,
∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,
∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,
∵S△ABC=AC BC=AB CE,∴AC BC=AB CE,∴CE=,
∴EF=,ED=AE=,∴DF=EF﹣ED= ∴B′F=.选:A.
【点睛】此题主要考查了翻折变换,勾股定理的应用等,根据折叠的性质求得相等的角是本题的关键.
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)
11.(2022·浙江杭州市·八年级期中)如图,小明家(A)在小亮家(B)的正北方,某日,小明与小亮约好去图书馆(D),一小明行走的路线是A→C→D,小亮行走的路线是B→C→D,已知,,,,已知小明骑自行车速度为a km/分钟,小亮走路,速度为0.1km分钟。小亮出发20分钟后小明再出发,若小明在路上遇到小亮,则带上小亮一起去图书馆,为了使小亮能坐上小明的顺风车,则a的取值范围是________。
【答案】
【分析】先根据勾股定理得出AC的长,再根据时间、路程、速度之间的关系分别求出小明、小亮同时到达C和D时a的值,即可得出而答案
【详解】解:在Rt中,,,,∴
小亮到C所用时间(分); 小亮到D所用时间(分)
∴小明、小亮同时到达C时, 小明、小亮同时到达D时,
∴a的取值范围是:
【点睛】本题考查了勾股定理的应用,以及路程问题,熟练掌握相关的知识是解题的关键
12.(2022·江苏)我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即尺,秋千踏板离地的距离就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.
【答案】14.5
【分析】设秋千的绳索长为x尺,由题意知:OC=x-(5-1)=(x-4)尺,CP′=10尺,OP′=x尺,根据勾股定理列方程即可得出结论.
【详解】解:设秋千的绳索长为x尺,由题意知:OC=x-(5-1)=(x-4)尺,CP′=10尺,OP′=x尺,
在Rt△OCP′中,由勾股定理得:(x-4) +10 =x ,解得:x=14.5,故答案为:14.5.
【点睛】本题主要考查了勾股定理的应用,由勾股定理建立方程是解题的关键.
13.(2022·浙江八年级期中)如图,以的三边为直径,分别向外作半圆,构成的两个月牙形面积分别为、, 的面积.若, ,则 的值为 ________ .
【答案】12
【分析】根据勾股定理和圆的面积公式即可求得的值.
【详解】解:设Rt△ABC的三边分别为a、b、c,则,
观察图形可得:,
即,
∵,∴=,∴=4+8=12,故答案为:12.
【点睛】本题考查了勾股定理、圆的面积,熟记圆的面积公式,利用等面积法得出等量关系是解答的关键.
14.(2021·安徽八年级期末)如图,在正方形网格中,每个小正方形的边长为是网格上的格点三角形,则它的边上的高等于_______.
【答案】
【分析】如图,过点B作BD⊥AC于D,先利用勾股定理求出,再利用三角形的面积计算公式即可求得边上的高.
【详解】解:如图,过点B作BD⊥AC于D,
由勾股定理得,
∵,
∴,∴,解得;故答案为:.
【点睛】本题考查了勾股定理与网格问题,三角形的面积公式,解题的关键是熟练掌握所学的知识,正确求出AC的长度.
15.(2022·浙江八年级期中)如图,铁路MN和公路PQ在O点处交汇,公路PQ上A处点距离O点240米,距离MN 120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_______s
【答案】8
【分析】过点A作AC⊥ON,根据题意可知AC的长与200米相比较,发现受到影响,然后过点A作AD=AB=200米,求出BD的长即可得出居民楼受噪音影响的时间.
【详解】解:如图:过点A作AC⊥ON,AB=AD=200米,
∵公路PQ上A处点距离O点240米,距离MN 120米,∴AC=120米,
当火车到B点时对A处产生噪音影响,此时AB=200米,
∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,
∵144千米/小时=40米/秒,∴影响时间应是:320÷40=8秒.故答案为:8.
【点睛】本题考查勾股定理的应用.根据题意构建直角三角形是解题关键.
16.(2022·贵州九年级)如图,矩形中,,,将矩形绕点顺时针旋转得到矩形,边与交于点,延长交于点,若,则的长为______.
【答案】
【分析】连接,过点作,设,分别解得的长,继而证明,由全等三角形的性质得到,由此解得,最后在中,利用勾股定理解得的值,据此解题.
【详解】如图,连接,过点作,
设,则矩形中
在与中,
在中,
,故答案为:.
【点睛】本题考查旋转变换、矩形的性质、全等三角形的判定与性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.
17.(2022·江苏九年级二模)如图,在中,,BD平分,将沿折叠,点A落处,则的面积是_____.
【答案】
【分析】根据折叠,在上,分别求出的面积,即可求出.
【详解】如图,分别过作垂足分别为
由折叠可知:,平分
平分,

又 故答案为:.
【点睛】本题考查了折叠问题,三角形全等的判定和性质,勾股定理,角平分线性质,求出的面积是解题的关键.
18.(2022·合肥市第四十五中学八年级期中)如图,点C为直线l上的一个动点,于D点,于E点,,,当长为________________为直角三角形.
【答案】3或2或.
【分析】作BF⊥AD于F,根据矩形的性质得到BF=DE=4,DF=BE=1,根据勾股定理用CD表示出AC、BC,根据勾股定理的逆定理列式计算,得到答案.
【详解】解:作BF⊥AD于F,则四边形DEBF为矩形, ∴BF=DE=4,DF=BE=1,
∴AF=AD-DF=3, 由勾股定理得,
当△ABC为直角三角形时, 即 解得,CD=3,
如图2,作BH⊥AD于H,
仿照上述作法,当∠ACB=90°时,由勾股定理得,
由得: 解得:
同理可得:当∠ABC=90°时,
综上:的长为:3或2或. 故答案为:3或2或.
【点睛】本题考查的是勾股定理及其逆定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么
三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2021·安徽九年级)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段分割成AM、MN、NB,若,,,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.
【答案】(1)点M、N是线段AB的勾股分割点;(2)或.
【分析】(1)由已知可得,依据勾股定理逆定理即可得结论,
(2)设,则,分两种情形①当为斜边时,依题意,②当为最斜边时,依题意,分别列出方程即可解决问题.
【详解】解:(1)是.理由:,, ,,,
,、、为边的三角形是一个直角三角形.
即:点M、N是线段AB的勾股分割点.
(2)设,则,
①当为最长线段时,依题意,即,解得,
②当为最长线段时,依题意.即,解得,
综上所述的长为或.
【点睛】本题考查了勾股定理的逆定理,解题的关键是理解题意,学会分类讨论,注意不能漏解,属于中考常考题型.
20.(2022·山东七年级期末)年是第六届全国文明城市创建周期的第三年,是“强基固本、全力冲刺”的关键之年.“创城”,既能深入改变一座城市的现代化进程,也能深刻影响生活在此间的人们.某小区在社区管理人员及社区居民的共同努力之下,在临街的拐角清理出了一块可以绿化的空地.如图,已知,,,,技术人员在只有卷尺的情况下,通过测量某两点之间距离,便快速确定了.
(1)请写出技术人员测量的是哪两点之间的距离以及确定的依据;
(2)若平均每平方米空地的绿化费用为元,试计算绿化这片空地共需花费多少元?
【答案】(1)测量的是点,之间的距离,依据是:如果三角形的三边长,,满足,那么这个三角形是直角三角形.(或:勾股定理的逆定理),见解析;(2)绿化这片空地共需要元
【分析】(1)根据勾股定理的逆定理即可判断;(2)由(1)中BD的长度,再根据勾股定理的逆定理判断出△BCD的形状,再利用三角形的面积公式,最后计算费用即可.
【详解】(1)测量的是点,之间的距离;
依据是:如果三角形的三边长,,满足,那么这个三角形是直角三角形.(或:勾股定理的逆定理).
(2)如图,连接,
,,,,由勾股定理,得,
又,,,是直角三角形,
..
绿化费用为:(元).答:绿化这片空地共需要元.
【点睛】本题考查的是勾股定理,勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ABD的形状是解答此题的关键.
21.(2022·辽宁八年级期末)今年的气候变化很大,极端天气频繁出现.某沿海城市气象台监测到台风中心位于正东方向的海上.如图所示,城市所在地为A,台风中心O正以每小时的速度向北偏西60°的方向移动,经监测得知台风中心的范围内将会受台风影响,.该城市是否受到这次台风的影响?若不受影响,请说明理由;若受到这次台风影响,请求出遭受这次台风影响的时间.
【答案】受影响,6小时
【分析】过点A作,在Rt△ACO中,根据直角三角形的性质求得AC=160,与200比较作答即可;以A为圆心,以200米长为半径画弧交BO于D、G两点,则A城受台风影响的距离为DG的长;在Rt△ACD中,根据勾股定理求出CD,同理求得CG,结合台风的风速即可解出A城受台风影响的时间.
【详解】解:如图,过点A作于点C,
由题得,,∴,
∵,∴会受到台风影响. 以A为圆心,以200米长为半径画弧交OB与D、G两点,
∴AD=AG=200千米,在Rt△ADC中,DA=200千米,AC=160千米,
由勾股定理得,(千米),同理可得CG=120,则DG=240千米,
∴A城遭受台风影响的时间是:t=240÷40=6(小时).
【点睛】本题考查勾股定理,速度与时间的关系,解题的关键是作出合适的辅助线.
22.(2022·浙江八年级期末)在中,,,.如图1,若时,根据勾股定理有.
(1)如图2,当为锐角三角形时,类比勾股定理,判断与的大小关系,并证明;
(2)如图3,当为钝角三角形时,类比勾股定理,判断与的大小关系,并证明;
(3)如图4,一块四边形的试验田,已知,米,米,米,米,求这块试验田的面积.
【答案】(1)猜想: ,证明见解析;(2)猜想:,证明见解析;(3)四边形ABCD的面积是米2.
【分析】(1)先作高线如图2,过点作于点,构造两个直角三角形,设,则,由勾股定理和AD构造等式 ,利用放缩法可得
(2)先作高线如图3,过点作,交的延长线于点,构造两个直角三角形设,则,利用勾股定得,整理得,利用放缩法
(3)如图4,连接.过点作于点E,由勾股定理求出 设,则EC=100-x,由勾股定理构造方程,解方程的,再求出DE,利用分割法求面即可
【详解】解:(1)猜想: ,
证明:如图2,过点作于点,设,则,
在Rt中,有, 在Rt中,有 ,
∴ ,解之:,
∵均为正数,∴ ;
(2)猜想: 证明:如图3,过点作,交的延长线于点,设,则,
在Rt中,有,在Rt中,有 ,
∴,解之:,∵均为正数,∴ ;
(3)如图4,连接.在Rt中,有,∴,
∵,∴ ,过点作于点E,设,则EC=100-x,
在Rt中,有,即,
在Rt中,有,即 ,∴,解之:,
在Rt中,有,∴DE=(取正),∴DE=,
∴,=(米2),
∴四边形ABCD的面积是米2.
【点睛】本题考查作高线,勾股定理,利用勾股定理推出锐角三角形,钝角三角形结论,用分割法求四边形面积,掌握高线最烦,利用勾股定理构造方程,判读锐角三角形与钝角三角形,利用分割法四边形求面是解题关键.
23.(2022·山东滨州市·八年级期末)勾股定理是人类重大科学发现之一.我国古代数学书《周髀算经》记载,约公元前11世纪,我国古代劳动人民就知道“若勾三,股四,则弦五”,比西方早500多年.请你运用学到的知识、方法和思想探究以下问题.
(探究一)我国汉代数学家赵爽创制了“赵爽弦图”,通过图形切割、拼接,巧妙地利用面积关系证明了勾股定理.古往今来,人们对勾股定理的证明一直保持着极大的热情.意大利著名画家达·芬奇用两张一样的纸片,拼出不一样的空洞,利用空洞面积相等也成功地证明了勾股定理(如图).
请你写出这一证明过程(图中所有的四边形都是正方形,三角形都是直角三角形).
(探究二)在学习勾股定理的过程中,我们获得了以下数学活动经验:分别以直角三角形的三边为边向外侧作正方形(如图2),它们的面积,,之间满足的等量关系是:__________.
迁移应用:如图3,图中所有的四边形都是正方形,三角形都是直角三角形.若正方形,,,的边长分别是,,,,则正方形的面积是________.
(探究三)如图4,分别以直角三角形的三边为直径向外侧作半圆,则它们的面积,,之间满足的等量关系是________.
迁移应用:如图5,直角三角形的两条直角边长分别为,,斜边长为,分别以三边为直径作半圆.若,,则图中阴影部分的面积等于________.
(探究四)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尺.问索长几何.译文:今有一竖立着的木柱,在木桩的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺.牵着绳索(绳索与地面接触)退行,在距木柱根部尺处时绳索用尽.问绳索长多少?
【答案】【探究一】:见解析;【探究二】:S1+S2=S3;迁移应用:47;【探究三】S1+S2=S3;迁移应用:30;【探究四】绳索长为尺.
【分析】【探究一】根据直角三角形以及正方形的面积公式计算即可解决问题.
【探究二】由正方形面积公式以及勾股定理得S1+S2=S3;
迁移应用:根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为正方形E的面积;
【探究三】利用直角△ABC的边长就可以表示出半圆S1、S2、S3的大小;
迁移应用:求出阴影部分的面积等于直角三角形的面积,然后列式计算即可得解;
【探究四】设绳索长为x尺,根据勾股定理列出方程解答即可.
【详解】解:【探究一】:由题意得:②的面积为a2+b2+2ab=a2+b2+ab;
图③的面积为c2+2ab=c2+ab,
∴a2+b2+ab=c2+ab,即a2+b2=c2;
【探究二】S1+S2=S3.
证明如下:∵S3=c2,S1=a2,S2=b2,
∴S1+S2=a2+b2=c2=S3;故答案为:S1+S2=S3;
迁移应用:根据勾股定理的几何意义,可知
SE=SF+SG=SA+SB+SC+SD=32+52+32+22=47;故答案为:47;
【探究三】S1+S2=S3.
证明如下:∵S3=πc2,S1=πa2,S2=πb2,
∴S1+S2= πa2+πb2=πc2=S3;故答案为:S1+S2=S3;
迁移应用:阴影部分面积和=S1+S2+ab-S3=ab,
∵a=5,c=13,∴12,
∴阴影部分面积和=×5×12=30,故答案为:30;
【探究四】设绳索长为x尺,根据题意得:x2-(x-3)2=82,解得:x=,
答:绳索长为尺.
【点睛】本题考查了勾股定理的证明及应用,读懂题目材料的信息并用两种方法准确表示出同一个图形的面积是解题的关键.
24.(2022·四川八年级月考)如图,在公路的同侧有两个居民点、,居民点、分别到公路的距离千米和千米,且两个居民点、相距千米.
(1)要在公路边修一个污水处理站来收集处理居民点、的污水,污水处理站修在什么地方到居民点、所用的水管最短;请你在图中设计出污水处理站的位置.(保留作图痕迹,不要证明)。(2)如图铺设水管的工程费用为每千米万元,为使铺设水管的费用最节省,请求出最节省的费用为多少万元?(3)要在公路边修一个汽车站,使汽车站到两个居民点、的距离相等,则点应该修在距点多远的地方(另画图并写出解答过程)
【答案】(1)画图见解析;(2)万元;(3);画图见解析
【分析】(1)作点A关于CD的对称点,连接,与CD的交点即为所求;
(2)AF⊥BD于点F,过点A′作,交BD延长线于点E,可得,,,利用勾股定理求得,继而由可得答案.
(3)作AB的中垂线,交CD于点M,点M即为所求;设,则,由即,列方程求解可得.
【详解】(1)如图1所示,点即为所求.
(2)如图1,过点作于点,过点作,交延长线于点,
则四边形和四边形均为矩形,
,,则,,
在中,,,
则,所以最节省的费用为(万元).
(3)如图,作的中垂线,交于点,则点即为所求;
连接、,设,则,
,,即,
解得:,即点在距离点的地方.
【点睛】本题考查了尺规作图,轴对称的性质、线段垂直平分线的性质及勾股定理的应用.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题2.7 探索勾股定理
模块一:知识清单
1、勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.
要点: (1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.
2、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中,所以.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
图(2)中,所以.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以.
3、勾股定理的逆定理
如果三角形的三条边长,满足,那么这个三角形是直角三角形.
要点:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形. (2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.
模块二:同步培优题库
全卷共24题 测试时间:80分钟 试卷满分:100分
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2022·福建福州市·八年级期中)△ABC三边分别为a、b、c,下列能说明△ABC是直角三角形的是( )
A.b2=a2﹣c2 B.a∶b∶c=1∶2∶2
C.2∠C=∠A+∠B D.∠A∶∠B∶∠C=3∶4∶5
2.(2022·武汉市黄陂区教学研究室八年级期末)图1是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如图2中的,按此规律,在线段,,,…中, 长度为整数的线段有( )条.
A.3 B.4 C.5 D.6
3.(2021·江苏八年级专题练习)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是( )
A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤13
4.(2022·山东八年级期末)如图,在△ABC中,CE平分∠ACB,CF平分△ABC的外角∠ACD,且EF∥BC交AC于M,若CM=4,则CE2+CF2的值为(  )
A.8 B.16 C.32 D.64
5.(2022·浙江金华初三月考)如图,圆柱底面半径为cm,高为18cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为(  )
A.24cm B.30cm C.2cm D.4cm
6.(2022·浙江八年级期中)如图,已知,且,, ,则A,F两点间的距离是( )
A.14 B. C. D.10
7.(2022·江西省初二月考)在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积是
A.126 cm2 或66 cm2 B.66 cm2 C.120 cm2 D.126cm2
8.(2022·云南九年级模拟)如图是按照一定规律“生长”的“勾股树”:
经观察可以发现:图(1)中共有3个正方形,图(2)在图(1)的基础上增加了4个正方形,图(3)在图(2)的基础上增加了8个正方形,……,照此规律“生长”下去,图(6)应在图(5)的基础上增加的正方形的个数是( )
A.12 B.32 C.64 D.128
9.(2022·浙江九年级)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若,则S2的值是( )
A.9 B.8 C.7 D.6
10.(2021·江苏西附初中八年级月考)如图,中,,,,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于点E、F,则线段的长为( )
A. B. C. D.
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)
11.(2022·浙江杭州市·八年级期中)如图,小明家(A)在小亮家(B)的正北方,某日,小明与小亮约好去图书馆(D),一小明行走的路线是A→C→D,小亮行走的路线是B→C→D,已知,,,,已知小明骑自行车速度为a km/分钟,小亮走路,速度为0.1km分钟。小亮出发20分钟后小明再出发,若小明在路上遇到小亮,则带上小亮一起去图书馆,为了使小亮能坐上小明的顺风车,则a的取值范围是________。
12.(2022·江苏)我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即尺,秋千踏板离地的距离就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.
13.(2022·浙江八年级期中)如图,以的三边为直径,分别向外作半圆,构成的两个月牙形面积分别为、, 的面积.若, ,则 的值为 ________ .
14.(2021·安徽八年级期末)如图,在正方形网格中,每个小正方形的边长为是网格上的格点三角形,则它的边上的高等于_______.
15.(2022·浙江八年级期中)如图,铁路MN和公路PQ在O点处交汇,公路PQ上A处点距离O点240米,距离MN 120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_______s
16.(2022·贵州九年级)如图,矩形中,,,将矩形绕点顺时针旋转得到矩形,边与交于点,延长交于点,若,则的长为______.
17.(2022·江苏九年级二模)如图,在中,,BD平分,将沿折叠,点A落处,则的面积是_____.
18.(2022·合肥市第四十五中学八年级期中)如图,点C为直线l上的一个动点,于D点,于E点,,,当长为________________为直角三角形.
三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2021·安徽九年级)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段分割成AM、MN、NB,若,,,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.
20.(2022·山东七年级期末)年是第六届全国文明城市创建周期的第三年,是“强基固本、全力冲刺”的关键之年.“创城”,既能深入改变一座城市的现代化进程,也能深刻影响生活在此间的人们.某小区在社区管理人员及社区居民的共同努力之下,在临街的拐角清理出了一块可以绿化的空地.如图,已知,,,,技术人员在只有卷尺的情况下,通过测量某两点之间距离,便快速确定了.(1)请写出技术人员测量的是哪两点之间的距离以及确定的依据;(2)若平均每平方米空地的绿化费用为元,试计算绿化这片空地共需花费多少元?
21.(2022·辽宁八年级期末)今年的气候变化很大,极端天气频繁出现.某沿海城市气象台监测到台风中心位于正东方向的海上.如图所示,城市所在地为A,台风中心O正以每小时的速度向北偏西60°的方向移动,经监测得知台风中心的范围内将会受台风影响,.该城市是否受到这次台风的影响?若不受影响,请说明理由;若受到这次台风影响,请求出遭受这次台风影响的时间.
22.(2022·浙江八年级期末)在中,,,.如图1,若时,根据勾股定理有.
(1)如图2,当为锐角三角形时,类比勾股定理,判断与的大小关系,并证明;
(2)如图3,当为钝角三角形时,类比勾股定理,判断与的大小关系,并证明;
(3)如图4,一块四边形的试验田,已知,米,米,米,米,求这块试验田的面积.
23.(2022·山东滨州市·八年级期末)勾股定理是人类重大科学发现之一.我国古代数学书《周髀算经》记载,约公元前11世纪,我国古代劳动人民就知道“若勾三,股四,则弦五”,比西方早500多年.请你运用学到的知识、方法和思想探究以下问题.
(探究一)我国汉代数学家赵爽创制了“赵爽弦图”,通过图形切割、拼接,巧妙地利用面积关系证明了勾股定理.古往今来,人们对勾股定理的证明一直保持着极大的热情.意大利著名画家达·芬奇用两张一样的纸片,拼出不一样的空洞,利用空洞面积相等也成功地证明了勾股定理(如图).
请你写出这一证明过程(图中所有的四边形都是正方形,三角形都是直角三角形).
(探究二)在学习勾股定理的过程中,我们获得了以下数学活动经验:分别以直角三角形的三边为边向外侧作正方形(如图2),它们的面积,,之间满足的等量关系是:__________.
迁移应用:如图3,图中所有的四边形都是正方形,三角形都是直角三角形.若正方形,,,的边长分别是,,,,则正方形的面积是________.
(探究三)如图4,分别以直角三角形的三边为直径向外侧作半圆,则它们的面积,,之间满足的等量关系是________.
迁移应用:如图5,直角三角形的两条直角边长分别为,,斜边长为,分别以三边为直径作半圆.若,,则图中阴影部分的面积等于________.
(探究四)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尺.问索长几何.译文:今有一竖立着的木柱,在木桩的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺.牵着绳索(绳索与地面接触)退行,在距木柱根部尺处时绳索用尽.问绳索长多少?
24.(2022·四川八年级月考)如图,在公路的同侧有两个居民点、,居民点、分别到公路的距离千米和千米,且两个居民点、相距千米.
(1)要在公路边修一个污水处理站来收集处理居民点、的污水,污水处理站修在什么地方到居民点、所用的水管最短;请你在图中设计出污水处理站的位置.(保留作图痕迹,不要证明)。(2)如图铺设水管的工程费用为每千米万元,为使铺设水管的费用最节省,请求出最节省的费用为多少万元?(3)要在公路边修一个汽车站,使汽车站到两个居民点、的距离相等,则点应该修在距点多远的地方(另画图并写出解答过程)
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)