相似三角形基本知识
知识点一:放缩与相似形
图形的放大或缩小,称为图形的放缩运动。
把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.
⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.
相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.
知识点二:比例线段有关概念及性质
(1)有关概念
1、比:选用同一长度单位量得两条线段。a、b的长度分别是m、n,那么就说这两条线段的比是a:b=m:n(或)
2、比的前项,比的后项:两条线段的比a:b中。a叫做比的前项,b叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,如
4、比例外项:在比例(或a:b=c:d)中a、d叫做比例外项。
5、比例内项:在比例(或a:b=c:d)中b、c叫做比例内项。
6、第四比例项:在比例(或a:b=c:d)中,d叫a、b、c的第四比例项。
7、比例中项:如果比例中两个比例内项相等,即比例为(或a:b=b:c时,我们把b叫做a和d的比例中项。
8.比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)
(2)比例性质
1.基本性质: (两外项的积等于两内项积)
2.反比性质: (把比的前项、后项交换)
3.更比性质(交换比例的内项或外项):
4.合比性质:(分子加(减)分母,分母不变)
.
注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间
发生同样和差变化比例仍成立.如:.
5.等比性质:(分子分母分别相加,比值不变.)
如果,那么.
注意:(1)此性质的证明运用了“设法” ,这种方法是有关比例计算,变形中一种常用方法.
(2)应用等比性质时,要考虑到分母是否为零.
(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.
知识点三:黄金分割
定义:在线段AB上,点C把线段AB分成两条线段AC和BC(AC>BC),如果,即AC2=AB×BC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。其中≈0.618。
2)黄金分割的几何作图:已知:线段AB.求作:点C使C是线段AB的黄金分割点.
作法:①过点B作BD⊥AB,使;
②连结AD,在DA上截取DE=DB;
③在AB上截取AC=AE,则点C就是所求作的线段AB的黄金分割点.黄金分割的比值为: .(只要求记住)
3)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形。
知识点四:平行线分线段成比例定理
(一)平行线分线段成比例定理
1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比.
例. 已知l1∥l2∥l3,
A D l1
B E l2
C F l3
可得
2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.
由DE∥BC可得:.此推论较原定理应用更加广泛,条件是平行.
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. (即利用比例式证平行线)
4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.
5.平行线等分线段定理:三条平行线截两条直线,如果在一条直线上截得的线段相等,难么在另一条直线上截得的线段也相等。
★★★三角形一边的平行线性质定理
定理:平行于三角形一边的直线截其他两边所得的线段对应成比例。
几何语言 ∵ △ABE中BD∥CE
∴简记:
归纳: 和推广:类似地还可以得到和
★★★三角形一边的平行线性质定理推论
平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.
★★★三角形一边的平行线的判定定理
三角形一边平行线判定定理 如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.
三角形一边的平行线判定定理推论 如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
★★★平行线分线段成比例定理
1.平行线分线段成比例定理:
两条直线被三条平行的直线所截,截得的对应线段成比例.
用符号语言表示:AD∥BE∥CF,.
2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等.
用符号语言表示:.
重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.
重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.
知识点三:相似三角形
相似三角形
1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
几种特殊三角形的相似关系:两个全等三角形一定相似。
两个等腰直角三角形一定相似。
两个等边三角形一定相似。
两个直角三角形和两个等腰三角形不一定相似。
补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等);
性质:两个相似三角形中,对应角相等、对应边成比例。
相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。
如△ABC与△DEF相似,记作△ABC ∽△DEF。相似比为k。
4)判定:①定义法:对应角相等,对应边成比例的两个三角形相似。
②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。
三角形相似的判定定理:
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两
个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多)
判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹
角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.
判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这
两个三角形相似.简述为:三边对应成比例,两三角形相似.
直角三角形相似判定定理: .斜边与一条直角边对应成比例的两直角三角形相似。 .直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
补充一:直角三角形中的相似问题:
斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.
射影定理:
CD2=AD·BD,
AC2=AD·AB,
BC2=BD·BA
(在直角三角形的计算和证明中有广泛的应用).
补充二:三角形相似的判定定理推论
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相似三角形的性质
①相似三角形对应角相等、对应边成比例.
②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比).
③相似三角形对应面积的比等于相似比的平方.
相似的应用:位似
1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形。
②两个位似图形的位似中心只有一个。
③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。
④位似比就是相似比。
2)性质:①位似图形首先是相似图形,所以它具有相似图形的一切性质。
②位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)。
③每对位似对应点与位似中心共线,不经过位似中心的对应线段平行。
【例题选讲】
1.(2013湖北孝感,12,3分)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于( )
A.
B.
C.
D.
分析:
依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.
解答:
解:∵AB=AC,
∴∠ABC=∠ACB,
又∵∠CBD=∠A,
∴△ABC∽△BDC,
同理可得:△ABC∽△BDC∽△CDE∽△DFE,
∴=,=,=,
解得:CD=,DE=,EF=.
故选C.
点评:
本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.
2.(2013·聊城,11,3分)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为( )
A.a B. C. D.
考点:相似三角形的判定与性质.
分析:首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为a,进而求出△ACD的面积.
解答:解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∴△ACD的面积:△ABC的面积为1:4,
∴△ACD的面积:△ABD的面积=1:3,
∵△ABD的面积为a,∴△ACD的面积为a,故选C.
点评:本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.
3.(2013?东营,10,3分)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值( )
A.只有1个 B.可以有2个 C.可以有3个 D.有无数个
答案:B
解析:当直角边为6,8时,且另一个与它相似的直角三角形3,4也为直角边时,x的值为5,当8,4为对应边且为直角三角形的斜边时,x的值为,故x的值可以为5或.两种情况。
4.(2013·济宁,11,3分)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为 cm.
考点:相似三角形的应用.
分析:根据题意可画出图形,再根据相似三角形的性质对应边成比例解答.
解答:解:∵DE∥BC,∴△AED∽△ABC∴=
设屏幕上的小树高是x,则=
解得x=18cm.故答案为:18.
点评:本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
5.(2013四川绵阳,10,3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( B )
A. B. C. D.
[解析]OA=4,OB=3,AB=5,△BDH∽△BOA,
BD/AB=BH/OB=DH/OA,6/5=BH/3,BH=18/5,
AH=AB-BH=5-18/5=7/5,△AGH∽△ABO,
GH/BO=AH/AO,GH/3=7/5 / 4,GH=21/20。
6.(2013四川内江,8,3分)如图,在?ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=( )
A.
2:5
B.
2:3
C.
3:5
D.
3:2
考点:
相似三角形的判定与性质;平行四边形的性质.
分析:
先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:10:25即可得出其相似比,由相似三角形的性质即可求出 DE:EC的值,由AB=CD即可得出结论.
解答:
解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EAB=∠DEF,∠AFB=∠DFE,
∴△DEF∽△BAF,
∵S△DEF:S△ABF=4:25,
∴DE:AB=2:5,
∵AB=CD,
∴DE:EC=2:3.
故选B.
点评:
本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.
7.(2013湖南长沙,16,3分)如图,在⊿ABC中,点D,点E分别是边AB,AC的中点,则⊿ADE与⊿ABC的周长之比等于 .
答案:1:2
【详解】由于点D、E分别是AB、AC的中点,即DE是△ABC的中位线,所以DE∥BC、且DE=0.5BC,所以△ADE∽△ABC,两三角形的周长比等于相似比,即为0.5:1=1:2。
8.(2013·泰安,26,?分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=AB?AD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求的值.
考点:相似三角形的判定与性质;直角三角形斜边上的中线.
分析:(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB?AD;
(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;
(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.
解答:(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,
∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,
∴AD:AC=AC:AB,∴AC2=AB?AD;
(2)证明:∵E为AB的中点,∴CE=AB=AE,
∴∠EAC=∠ECA,
∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;
(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,
∵CE=AB,∴CE=×6=3,
∵AD=4,∴,∴.
点评:此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
9.(2013四川巴中,29,10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.
考点:
相似三角形的判定与性质;勾股定理;平行四边形的性质.
分析:
(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;
(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.
解答:
(1)证明:∵?ABCD,∴AB∥CD,AD∥BC,
∴∠C+∠B=180°,∠ADF=∠DEC.
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C.
在△ADF与△DEC中,
∴△ADF∽△DEC.
(2)解:∵?ABCD,∴CD=AB=8.
由(1)知△ADF∽△DEC,
∴,∴DE===12.
在Rt△ADE中,由勾股定理得:AE===6.
点评:
本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错.
10.(2013四川乐山,22,10分)选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分。
题甲:如图,AB是⊙O的直径,经过圆上点D的直线CD恰∠ADC=∠B。
(1)求证:直线CD是⊙O的的切线;
(2)过点A作直线AB的垂线交BD的延长线于点E,且AB=,BD=2,求线段AE的长。
11.(2013四川遂宁,24,10分)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.
(1)求证:CF是⊙O的切线;
(2)求证:△ACM∽△DCN;
(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.
考点:
圆的综合题.
分析:
(1)根据切线的判定定理得出∠1+∠BCO=90°,即可得出答案;
(2)利用已知得出∠3=∠2,∠4=∠D,再利用相似三角形的判定方法得出即可;
(3)根据已知得出OE的长,进而利用勾股定理得出EC,AC,BC的长,即可得出CD,利用(2)中相似三角形的性质得出NB的长即可.
解答:
(1)证明:∵△BCO中,BO=CO,
∴∠B=∠BCO,
在Rt△BCE中,∠2+∠B=90°,
又∵∠1=∠2,
∴∠1+∠BCO=90°,
即∠FCO=90°,
∴CF是⊙O的切线;
(2)证明:∵AB是⊙O直径,
∴∠ACB=∠FCO=90°,
∴∠ACB﹣∠BCO=∠FCO﹣∠BCO,
即∠3=∠1,
∴∠3=∠2,
∵∠4=∠D,
∴△ACM∽△DCN;
(3)解:∵⊙O的半径为4,即AO=CO=BO=4,
在Rt△COE中,cos∠BOC=,
∴OE=CO?cos∠BOC=4×=1,
由此可得:BE=3,AE=5,由勾股定理可得:
CE===,
AC===2,
BC===2,
∵AB是⊙O直径,AB⊥CD,
∴由垂径定理得:CD=2CE=2,
∵△ACM∽△DCN,
∴=,
∵点M是CO的中点,CM=AO=×4=2,
∴CN===,
∴BN=BC﹣CN=2﹣=.
点评:
此题主要考查了相似三角形的判定与性质以及切线的判定和勾股定理的应用等知识,根据已知得出△ACM∽△DCN是解题关键.
12.(2013山东德州,24,12分)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转900,得到△DOC。抛物线y=ax2+bx+c经过点A、B、C。
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t。
①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F。求出当△CEF与△COD相似时点P的坐标;
②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD面积的最大值;若不存在,请说明理由。
【思路分析】(1)用待定系数法求出抛物线解析式;(2)求动点P坐标,需要进行探究,分类讨论存在情况,结合相似、列一元二次方程解题;要探究使△PCD的面积最大,寻求PN=PM-NM,S△PCD=△PCN+△PND列出二次函数模型来解决.
【解】(1)在Rt△AOB中,OA=1,tan∠BAO=3
∵tan∠BAO=
∴OB=OA·tan∠BAO=3
∵△DOC是由△AOB绕原点O逆时针旋转900而得到的。
∴OC=OB=3,OD=OA=1
∴A、B、C三点的坐标分别为(1,0),(0,3),(-3,0)
代放抛物线解析式得,
a+b+c=0
c=3
9a-3b+c=0
解之得,a=-1,b=-2,c=3
∴抛物线的解析式为:y=-x2-2x+3
(2)①抛物线y=-x2-2x+3的对称轴l为:x== -1
∴E点坐标为(-1,4)
(ⅰ)当∠CEF=900时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点。坐标为(-1,4)
(ⅱ)当∠CFE=900时,△CFE∽△COD。过点P做PMCA于点M,则△EFC∽△EMP。于是,,
∴MP=3EM.
即:-t2-2t+3=3(-1-t)。
整理得:t2-t-6=0
解之得:t1=-2,t2=-3(不合题意,舍去)。
所以此时点P的坐标为(-2,3)
所以当△CEF与△COD相似时点P的坐标分别为:(-1,4)或(-2,3)。
②设直线CD的解析式为:y=kx+m则得: ,解之得:k=,m=1
所以直线CD的解析式为:y=x+1
设PM与CD的交点为N,则点N的坐标为(t, t+1).
∴ PN=PM-NM=-t2-2t+3-(t+1)=-t2-t+2
则S△PCD=△PCN+△PND
=PN×CM+PN×OM=PN×(CM+OM)=PN×OC
=(-t2-t+2)=-(t+)2+
∴当t=-时,S△PCD的最大值为。