浙教版八上(浙教版)第2章 特殊三角形2.3 等腰三角形的性质定理
一、选择题(共8小题)
1. 如图所示,在 中,, 是 的中点.下列结论中,不正确的是
A. B.
C. 平分 D.
2. 如图所示,在 中,, 是 边上的高线,, 是 的三等分点,若 的面积为 ,则图中 的面积为
A. B. C. D.
3. 如图所示,在 中,,,线段 的垂直平分线交 于点 ,交 于点 ,连接 ,则 的度数为
A. B. C. D.
4. 如图所示,在 中,,, 是 边上的中线,且 ,则 的度数为
A. B. C. D.
5. 如图所示,在 中,点 ,, 分别在 ,, 上,且 ,,,则 的度数为
A. B. C. D.
6. 如图所示,在 中,,在 上截取 ,作 的平分线与 交于点 ,连接 ,若 的面积为 ,则 的面积为
A. B. C. D.
7. 下列说法:①等腰三角形的高线、中线、角平分线互相重合;②等腰三角形的两腰上的中线长相等;③等腰三角形的腰一定大于其腰上的高线;④等腰三角形的一边长为 ,另一边长为 ,那么它的周长是 或 .其中不正确的是
A. ①③ B. ①④ C. ①③④ D. ①②③④
8. 如图所示,在 中,, 是 的角平分线, 于点 , 于点 ,给出下列结论:① ;② 上任意一点到 , 的距离相等;③ ;④ ,.其中正确的有
A. 个 B. 个 C. 个 D. 个
二、填空题(共6小题)
9. 如图所示,在 中,, 于点 ,若 ,则 .
10. 如图所示, 的周长为 ,且 , 于点 , 的周长为 ,那么 的长为 .
11. 如图所示, 为等边三角形,,,则 .
12. 如图所示,在 中,,,点 在 内,,,则 .
13. 如图所示,在 中,, 于点 ,若 ,,则 的周长是 .
14. 如图所示,在 中,,, 的平分线与 的垂直平分线交于点 .将 沿 (点 在 上,点 在 上)折叠,点 与点 恰好重合,则 .
三、解答题(共5小题)
15. 如图所示,点 , 在 的 边上,,.求证:.
16. 如图所示,,, 平分 ,求证:.
17. 如图所示, 是 的边 上的点,且 ,, 是 的中线.求证:.
18. 某数学兴趣小组开展了一次活动,过程如下:设 .现把小棒依次摆放在两射线 , 之间,并使小棒两端分别落在两射线上.
(1)【探究一】如图1所示,从点 开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直, 为第 根小棒.
【思考】
(1)小棒能无限摆下去吗 答: (填“能”或“不能”).
(2)设 ,求 的度数.
(2)【探究二】如图2所示,从点 开始,用等长的小棒依次向右摆放,其中 为第 根小棒,且
【思考】
(3)若已经向右摆放了 根小棒,则 , , .(用含 的代数式表示)
19. 如图所示,在 中,, 于点 , 于点 ,交 于点 .
(1)若 ,求 的度数.
(2)若 是 的中点,求证:.
答案
1. D
2. A
3. A
4. B
5. B
6. D
7. C
8. D
9.
10.
11.
12.
13.
14.
【解析】连接 、 .
, 为 的平分线,
,
又 ,
.
是 的垂直平分线,
.
.
,
为 的平分线,,
(),
,
点 在 的垂直平分线上,
又 是 的垂直平分线,
点 是 的外心,
,
将 沿 ( 在 上, 在 上)折叠,点 与点 恰好重合,
,
,
在 中,.
15. 如图所示,过点 作 于点 .
,
.
,
.
,即 .
16. ,,
,,.
又 平分 ,
.
.
又 ,
.
17. 如图所示,延长 到点 ,使 ,连接 .
是 的中线,
.
在 和 中,
.
,.
是 的外角,
.
,,
.
.
,
.
在 和 中,
.
.
,,
.
18. (1) (1)能;
(2),,
,
.
,
.
.
(2) ;;
19. (1) ,
.
,,
.
.
,
.
,.
.
(2) 连接 .
,且 是 的中点,
,.
.
,
.
.