课件30张PPT。 潍坊国际是一年一度的国际风筝盛会,一般定于每年4月20日至25日在风筝都山东潍坊举行。
1984年举办第一届潍坊风筝节以来,吸引着大批中外风筝专家和爱好者及游人前来观赏、竞技和游览。 有一个能工巧匠制作了这样的一个大型风筝,为了顺利把风筝放上天,他需要在风筝上增加几个栓线的环。
如图,他这样加两个环能顺利的放飞风筝吗?如果不能,聪明的你可以给他什么好的建议吗?考考你2.1 图形的轴对称 如果一个图形沿着一条直线折起来,直线两侧的部分能够相互重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。概念 对称轴两侧能互相重合的两个点叫做对称点。1、下列图形是轴对称图形吗?你是怎样判别的? 用对折的方法判断一个图形是不是轴对称图形请你试一试2、在生活中,我们常见的轴对称图形有哪些?请你试一试3、找出下列图形的对称轴: 线段、角是轴对称图形吗?如果是轴对称图形,请分别说出它们的对称轴。请你想一想 线段是轴对称图形,它的对称轴是这条线段的垂直平分线. 角是轴对称图形,它的对称轴是这个角的平分线所在的直线.(1)请同学们拿出准备好的长方形纸,用对折的方法找出一条对称轴,用笔画出,记为直线m;
(2)在直线m的左边空白处任意取一点,标为A;
(3)用对折的方法找出点A关于直线m的对称点,标为A’;
(4)连接AA’交直线m于O点.问题1:请用对折的方法找出图中相等的线段.问题2:请找出图中相等的角,它们的度数是多少?问题3:直线m和线段AA’有什么特殊的关系?探究活动:轴对称图形的性质 对称轴垂直平分连结两个对称点之间的线段。例分别画出下列轴对称图形的对称轴:解:(1)如图2-6,作线段AB的垂直平分线m ,直线m就是所求的对称轴。m(2)如图2-7,作线段CD的垂直平分线n,直线n就是所求的对称轴。AB图2-6nDC如图,四边形ABCD是等腰梯形。1、作轴对称图形的对称轴,一般步骤是:请你理一理(1)找一组对称点画对称点连线作连线的垂直平分线(2)找两组对称点分别取两组对称点连线的中点过两中点作直线。想一想 如图2-6,怎样找出点E和点F的对称点?(3)过点E作EM⊥直线m于点M,延长EM交BC于点H,点H是点E的对称点。同理过点F做FN ⊥直线m于点N,延长FN到点G,使GN=FN,点G是点F的对称点。mAG图2-6DCHFNMBE如图,四边形ABCD是等腰梯形。1、作轴对称图形的对称轴,一般步骤是:请你理一理(1)找一组对称点画对称点连线作连线的垂直平分线(2)找两组对称点分别取两组对称点连线的中点过两中点作直线。2、作轴对称图形上已知点的对称点,一般步骤是:过已知点作对称轴的垂线截取等长的线段1、如图的京剧脸谱是一个轴对称图形。
(1)画出这个图形的对称轴。
(2)A,B是这个图形上的两个点,分别作出它们的对称点。CDBA课内练习2、判断下列图形是不是轴对称图形,若是,指出它们的对称轴。一般平行四边形一般长方形圆等边三角形正方形不是轴对称图形无数条 如图,是由三个小正方形组成的图形,请你补画一个小正方形,使补画后的图形为轴对称图形,并画出对称轴。请你试一试请你试一试数学日记一个概念:轴对称图形一个性质:轴对称图形的性质 对称轴垂直平分连结两个对称点之间的线段。两种技能:(1)作轴对称图形的对称轴;(2)作轴对称图形中已知点的对称点.应用轴对称图形的性质作图:
必做题 ① 课本作业题 A组
② 作业本
选做题(基础型)课本作业题 B组
(研究型)
①阅读学案上的课外学习资料.
②利用本节课所学知识设计并制
作一幅精美的轴对称图案.
布置作业,巩固提高美国国会大楼请你来欣赏请你来欣赏法国埃菲尔铁塔印度泰姬陵请你来欣赏 北京故宫请你来欣赏请你来欣赏请你来欣赏请你来欣赏请你来欣赏请你来欣赏 祝同学们学习进步! 再 见! 2.1 轴对称图形(学案)
班级: 姓名:
学习目标:1、进一步认识轴对称图形的概念;
2、会判断一个图形是不是轴对称图形,并找出它的对称轴;
3、理解轴对称图形的性质:对称轴垂直平分连结两个对称点之间的线段;
4、了解现实生活中的轴对称图形。
学习过程:
一、探究活动
(1)请同学们拿出准备好的长方形纸,用对折的方法找出一条对称轴,用笔画出,记为直线m;
(2)在直线m的左边空白处任意取一点,标为A’;
(3)用对折的方法找出点A关于直线m的对称点,标为A’;
(4)连接AA’交直线m于O点.
请思考以下问题:
问题1:请用对折的方法找出图中相等的线段.
问题2:请找出图中相等的角,它们的度数是多少?
问题3:直线m和线段AA’有什么特殊的关系?
由此,你得到了什么结论?
二、例题补充:如图,四边形ABCD是等腰梯形。怎样找出点E和点F的对称点?
三、课内练习
1、如图的京剧脸谱是一个轴对称图形。
(1)画出这个图形的对称轴。
(2)A,B是这个图形上的两个点,分别作出它们的对称点。
2、判断下列图形是不是轴对称图形,若是,指出它们的对称轴。
一般平行四边形 一般长方形 正方形
圆 等边三角形
四、请你试一试
如图,是由三个小正方形组成的图形,请你补画一个小正方形,使补画后的图形为轴对称图形,并画出对称轴。
五、数学日记:
今天是 月 日,我们学习了 。
本节课的主要内容有:
针对本节课,我还有如下困惑:
六、课外学习资料:
对称与文化
朴素的对称观念在我们的生活中广泛存在:①文学中的对仗也是一种“对称”。王维的诗句“明月松间照,清泉石上流”无非是把第一句中的“明月”变成了第二句中的“清泉”,“松间”变成了“石上”,“照”变成了“流”,词意变了,但是词性和句式结构并没有变。由于工整的文字对仗,使王维诗的自然意境之美得到很好地表现。我国文学中的歌赋尤其是对联,更把“对称”的要求推进到极高的境界。
2.1 轴对称图形(教案)
教学目标
知识与技能:认识轴对称图形,了解轴对称图形的概念,掌握轴对称图形的性质,能画出轴对称图形的对称轴以及在轴对称图形上找到已知点的对称点。
过程与方法:培养学生欣赏和鉴别图形的能力,初步运用轴对称图形的性质说明一些图形的结论。
情感、态度与价值观:经历图案的观赏探索过程,领悟图形的对称美的感受,激发学生不断去探索图形奥秘的热情。
教学重、难点
重点:轴对称图形的概念和性质。
难点:轴对称图形的性质的得出需要一个比较复杂的探索过程,其中包括推理和表述,是本节的教学难点。
教学过程设计
创设情景,引入新课
师:同学们,大家周末都是有些什么活动啊?
生:……
师:老师呢,就特别喜欢放风筝。我们平时放的风筝都是比较小巧的,老师找了一些比较大型的风筝图片。我们一起来欣赏!(播放幻灯片)
这些风筝都是在一年一度的国际风筝大会——潍坊国际上展示的能工巧匠的手艺。现在,有一个能工巧匠制作了这样的一个大型风筝,为了顺利把风筝放上天,他需要在风筝上增加几个栓线的环。
如图,他这样加两个环能顺利的放飞风筝吗?如果不能,聪明的你可以给他什么好的建议吗?
生:……
师:这就是我们今天要研究的轴对称图形!(板书课题)
感知概念,探究新知
师:什么是轴对称图形呢?
(归纳)轴对称图形的概念:
如果一个图形沿着一条直线折起来,直线两侧的部分能够相互重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
对称轴两侧能互相重合的两个点叫做对称点。
(请你试一试)1、下列图形是轴对称图形吗?你是怎样判别的?
用对折的方法判断一个图形是不是轴对称图形。
2、在生活中,我们常见的轴对称图形有哪些?
3、找出下列图形的对称轴:
【设计意图】通过“请你试一试”,让学生对轴对称图形、对称轴的概念有一个初步的认识、了解,做到能找出一个轴对称图形的对称轴。
合作交流,共同进步
(探究活动)(1)请同学们拿出准备好的长方形纸,用对折的方法找出一条对称轴,用笔画出,记为直线m;
(2)在直线m的左边空白处任意取一点,标为A’;
(3)用对折的方法找出点A关于直线m的对称点,标为A’;
(4)连接AA’交直线m于O点.
请思考以下问题:
问题1:请用对折的方法找出图中相等的线段.
问题2:请找出图中相等的角,它们的度数是多少?
问题3:直线m和线段AA’有什么特殊的关系?
由此,你得到了什么结论?
【设计意图】通过“探究活动”,学生自己动手操作,画对称轴、找对称点,有效培养了学生的自主学习意识。伴随着三个思考题,可以在活动中捕获我们所需要的信息:相等的线段、相等的角、对称轴与线段之间的关系。
由此,我们得到了轴对称图形的性质:
对称轴垂直平分连结两个对称点之间的线段。
例 分别画出下列轴对称图形的对称轴:
(1)如图,四边形ABCD是等腰梯形。 (2)
(3)如图,四边形ABCD是等腰梯形。怎样找出点E和点F的对称点?
【设计意图】通过(1)(2)的探索与教学,学生对规范地作出一个轴对称图形的对称轴有了具体的认识。而学生对(3)的一个探索,对做出轴对称图形上已知点的对称点的方法有了一个尝试。
结合轴对称图形的性质,我们可以归纳出如下方法:
1、作轴对称图形的对称轴,一般步骤是:
(1)找一组对称点 画对称点连线 作连线的垂直平分线
(2)找两组对称点 分别取两组对称点连线的中点 过两中点作直线。
2、作轴对称图形上已知点的对称点,一般步骤是:
过已知点作对称轴的垂线 截取等长的线段
(四)巩固新知,拓展提高
(课内练习)
1、如图的京剧脸谱是一个轴对称图形。
(1)画出这个图形的对称轴。
(2)A,B是这个图形上的两个点,分别作出它们的对称点。
2、判断下列图形是不是轴对称图形,若是,指出它们的对称轴。
(请你试一试)
如图,是由三个小正方形组成的图形,请你补画一个小正方形,使补画后的图形为轴对称图形,并画出对称轴。
【设计意图】通过“请你试一试”,激发学生的学习兴趣,培养学生的动手探究能力,是学生对本节课内容的汇报,也是本节课的“高潮”阶段。
(五)课内总结,反馈提高
一个概念:轴对称图形.
一个性质:轴对称图形的性质
对称轴垂直平分连接两个对称点之间的连线。
两种技能:应用轴对称图形的性质作图:
(1)作轴对称图形的对称轴;(2)作轴对称图形中已知点的对称点.
【设计意图】通过“数学日记”的填写,对本节课的知识点进行归纳总结,同时了解学生的学习情况以及困惑。通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.
(六)作业布置:
必做题 ① 课本作业题 A组 ② 作业本
选做题(基础型)课本作业题 B组
(研究型) ①阅读学案上的课外学习资料.
②利用本节课所学知识设计并制作一幅精美的轴对称图案。
(七)图片欣赏,感受生活中的对称美
【设计意图】在我们的生活中,有各种各样的轴对称图形。通过“请你来欣赏”,让学生领略轴对称之美,激发他们发现美的兴趣。
四、板书设计
屏幕投影
2.1 轴对称图形
1、概念:
2、性质:对称轴垂直平分连接两个对称点之间的连线。
3、利用轴对称图形的性质作图:
(1)作轴对称图形的对称轴;
(2)作轴对称图形中已知点的对称点.
(作图)
五、课后小结及反思