2022-2023学年浙教版八年级数学上册《第1章三角形的初步认识》同步练习题(附答案)
一.选择题
1.下列说法正确的是( )
A.三角形的角平分线是射线
B.过三角形的顶点,且过对边中点的直线是三角形的一条中线
C.锐角三角形的三条高交于一点
D.三角形的高、中线、角平分线一定在三角形的内部
2.在正方形方格纸中,每个小方格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形,如图是5×7的正方形方格纸,以点D,E为两个顶点作格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出( )
A.2个 B.4个 C.6个 D.8个
3.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠FAB.有下列结论:①∠B=∠C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
4.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )
A.75° B.80° C.85° D.90°
5.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是( )
A.30° B.45° C.55° D.60°
6.若a、b、c为△ABC的三边长,且满足|a﹣4|0,则c的值可以为( )
A.5 B.6 C.7 D.8
7.三角形的三边长分别为5,8,x,则最长边x的取值范围是( )
A.3<x<8 B.5<x<13 C.3<x<13 D.8≤x<13
8.如图,BP是△ABC中∠ABC的平分线,CP是△ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=( )
A.70° B.80° C.90° D.100°
9.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )
A.45° B.60° C.75° D.90°
10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )
A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD
11.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )
A.50 B.62 C.65 D.68
二.填空题
12.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为 cm2.
13.如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC= .
14.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB= .
15.如图,在△ABC中,∠C=40°,按图中虚线将∠C剪去后,∠1+∠2等于 .
16.如果将一副三角板按如图方式叠放,那么∠1的大小为 (度).
17.一个三角形的两边长分别是2和7,另一边长a为偶数,且2<a<8,则这个三角形的周长为 .
三.解答题
18.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.
19.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.
20.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED.
21.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.
22.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:
①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
23.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)
(1)运动 秒时,AEDC;
(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;
(3)若△ABD≌△DCE,∠BAC=α,则∠ADE= (用含α的式子表示).
24.将纸片△ABC沿DE折叠使点A落在A′处的位置.
(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.
(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是 .
(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.
25.如图,已知AP∥BC,∠PAB的平分线与∠CBA的平分线相交于点E,CE的连线交AP于点D,求证:AD+BC=AB.
参考答案
一.选择题
1.解:A.三角形的角平分线是线段,故A不符合题意;
B.三角形的中线是线段,故B不符合题意;
C.锐角三角形的三条高交于一点说法正确,故C符合题意;
D.锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故D不符合题意;
故选:C.
2.解:与△ABC全等的三角形有△DEF,△DEQ,△DER,△DEW,共4个三角形,
故选:B.
3.解:∵∠EAC=∠FAB,
∴∠EAB=∠CAF,
在△ABE和△ACF,
,
∴△ABE≌△ACF(AAS),
∴∠B=∠C.AE=AF.故①正确;
由△AEB≌△AFC知:∠B=∠C,AC=AB;
在△ACN和△ABM,
,
∴△ACN≌△ABM(ASA)(故④正确);
∴AN=AM.
∵AC=AB,
∴CM=BN.
故③正确;
由于条件不足,无法证得②CD=DN;
综上所述,正确的结论是①③④,共有3个.
故选:C.
4.解:∵AD是BC边上的高,∠ABC=60°,
∴∠BAD=30°,
∵∠BAC=50°,AE平分∠BAC,
∴∠BAE=25°,
∴∠DAE=30°﹣25°=5°,
∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
∴∠EAD+∠ACD=5°+70°=75°,
故选:A.
5.解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,
∵BE平分∠NBA,AC平分∠BAO,
∴∠ABE∠ABN,∠BAC∠BAO,
∴∠C=∠ABE﹣∠BAC(∠AOB+∠BAO)∠BAO∠AOB,
∵∠MON=90°,
∴∠AOB=90°,
∴∠C90°=45°.
故选:B.
6.解:∵|a﹣4|0,
∴a﹣4=0,a=4;b﹣2=0,b=2;
则4﹣2<c<4+2,
2<c<6,5符合条件;
故选:A.
7.解:∵5+8=13,8﹣5=3,
∴3<x<13,
又∵x是三角形中最长的边,
∴8≤x<13.
故选:D.
8.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∵∠ABP=20°,∠ACP=50°,
∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,
∴∠A=∠ACM﹣∠ABC=60°,
∠ACB=180°﹣∠ACM=80°,
∴∠BCP=∠ACB+∠ACP=130°,
∵∠PBC=20°,
∴∠P=180°﹣∠PBC﹣∠BCP=30°,
∴∠A+∠P=90°,
故选:C.
9.解:180°
=75°
即∠C等于75°.
故选:C.
10.解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;
B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;
C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;
D、SSA不能判定△ABC≌△DCB,故此选项符合题意;
故选:D.
11.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH,
∴∠EAB=∠EFA=∠BGA=90°,
∵∠EAF+∠BAG=90°,∠ABG+∠BAG=90°,
∴∠EAF=∠ABG,
∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG,
∴△EFA≌△AGB,
∴AF=BG,AG=EF.
同理证得△BGC≌△CHD得GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16
故S(6+4)×16﹣3×4﹣6×3=50.
故选:A.
二.填空题
12.解:∵D为BC中点,根据同底等高的三角形面积相等,
∴S△ABD=S△ACDS△ABC4=2(cm2),
同理S△BDE=S△CDES△BCE2=1(cm2),
∴S△BCE=2(cm2),
∵F为EC中点,
∴S△BEFS△BCE2=1(cm2).
故答案为1.
13.解:∵D点是∠ABC和∠ACB角平分线的交点,
∴∠CBD=∠ABD∠ABC,∠BCD=∠ACD∠ACB,
∴∠ABC+∠ACB=180°﹣40°=140°,
∴∠DBC+∠DCB=70°,
∴∠BDC=180°﹣70°=110°,
故答案为:110°.
14.解:∵∠ACB=∠ECD=90°,
∴∠BCD=∠ACE,
在△BDC和△AEC中,
,
∴△BDC≌△AEC(SAS),
∴∠DBC=∠EAC,
∵∠EBD=∠DBC+∠EBC=42°,
∴∠EAC+∠EBC=42°,
∴∠ABE+∠EAB=90°﹣42°=48°,
∴∠AEB=180°﹣(∠ABE+∠EAB)=180°﹣48°=132°.
15.解:∵△ABC中,∠C=40°,
∴∠A+∠B=180°﹣∠C=140°,
∵∠A+∠B+∠1+∠2=360°,
∴∠1+∠2=360°﹣140°=220°,
故答案为:220°.
16.解:如图,∵∠C=60°,
∴Rt△ABC中,∠ABC=30°,
又∵∠BAD=45°,
∴∠1=∠ABC+∠BAD=30°+45°=75°,
故答案为:75.
17.解:∵7﹣2=5,7+2=9,
∴5<a<9.
又∵2<a<8,
∴5<a<8.
∵a为偶数,
∴a=6.
∴周长为9+6=15.
故答案是:15.
三.解答题
18.解:设BD=CD=x,AB=y,则AC=2BC=4x,
∵BC边上的中线AD把△ABC的周长分成60和40两部分,AC>AB,
∴AC+CD=60,AB+BD=40,
即4x+x=60,x+y=40,
解得:x=12,y=28,
当AB=28,BC=24,AC=48时,符合三角形三边关系定理,能组成三角形,
所以AC=48,AB=28.
19.证明:∵FB=CE,
∴BC=EF,
又∵AB∥ED,AC∥FD,
∴∠ABC=∠DEF,∠ACB=∠DFE,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA),
∴AC=DF,
在△AOC和△DOF中,
,
∴△AOC≌△DOF(AAS)
∴AO=DO,FO=CO,
∵BF=CE,
∴BO=EO,
∴AD与BE互相平分.
20.证明:∵AE和BD相交于点O,
∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠2.
又∵∠1=∠2,
∴∠1=∠BEO,
∴∠AEC=∠BED.
在△AEC和△BED中,
,
∴△AEC≌△BED(ASA).
21.(1)证明:∵∠BAC=∠DAE=90°
∴∠BAC+∠CAD=∠DAE+∠CAD
即∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS).
(2)BD、CE特殊位置关系为BD⊥CE.
证明如下:由(1)知△BAD≌△CAE,
∴∠ADB=∠E.
∵∠DAE=90°,
∴∠E+∠ADE=90°.
∴∠ADB+∠ADE=90°.
即∠BDE=90°.
∴BD、CE特殊位置关系为BD⊥CE.
22.证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,
∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.
∴∠CAD=∠BCE.
∵AC=BC,
∴△ADC≌△CEB.
②∵△ADC≌△CEB,
∴CE=AD,CD=BE.
∴DE=CE+CD=AD+BE.
解:(2)∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE.
又∵AC=BC,
∴△ACD≌△CBE.
∴CE=AD,CD=BE.
∴DE=CE﹣CD=AD﹣BE.
(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).
∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE,
又∵AC=BC,
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
∴DE=CD﹣CE=BE﹣AD.
23.解:(1)由题可得,BD=CE=2t,
∴CD=12﹣2t,AE=8﹣2t,
∴当AEDC,时,8﹣2t(12﹣2t),
解得t=3,
故答案为:3;
(2)当△ABD≌△DCE成立时,AB=CD=8,
∴12﹣2t=8,
解得t=2,
∴运动2秒时,△ABD≌△DCE能成立;
(3)当△ABD≌△DCE时,∠CDE=∠BAD,
又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,
∴∠ADE=∠B,
又∵∠BAC=α,AB=AC,
∴∠ADE=∠B(180°﹣α)=90°α.
故答案为:90°α.
24.解:(1)图1中,2∠A=∠1+∠2,
理由是:∵延DE折叠A和A′重合,
∴∠AED=∠A′ED,∠ADE=∠A′DE,
∵∠AED+∠ADE=180°﹣∠A,∠1+∠2=180°+180°﹣2(∠AED+∠ADE),
∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A;
(2)2∠A=∠2,如图
∠2=∠A+∠EA′D=2∠A,
故答案为:2∠A=∠2;
(3)如图2,2∠A=∠2﹣∠1,
理由是:∵延DE折叠A和A′重合,
∴∠A=∠A′,
∵∠DME=∠A′+∠1,∠2=∠A+∠DME,
∴∠2=∠A+∠A′+∠1,
即2∠A=∠2﹣∠1.
25.证明:如图,在AB上截取AF=AD,连接EF,
∵AE平分∠PAB,
∴∠DAE=∠FAE,
在△DAE和△FAE中,
∵,
∴△DAE≌△FAE(SAS),
∴∠AFE=∠ADE,
∵AD∥BC,
∴∠ADE+∠C=180°,
∵∠AFE+∠EFB=180°,
∴∠EFB=∠C,
∵BE平分∠ABC,
∴∠EBF=∠EBC,
在△BEF和△BEC中,
∵,
∴△BEF≌△BEC(AAS),
∴BC=BF,
∴AD+BC=AF+BF=AB.
证法二:如图,延长AE交BC的延长线于M,
∵AE平分∠PAB,BE平分∠CBA,
∴∠1=∠2,∠3=∠4,
∵AD∥BC
∴∠1=∠M=∠2,∠1+∠2+∠3+∠4=180°
∴BM=BA,∠3+∠2=90°,
∴BE⊥AM,
在△ABE和△MBE中,
,
∴△ABE≌△MBE(ASA),
∴AE=ME,
在△ADE和△MCE中,
,
∴△ADE≌△MCE(ASA),
∴AD=CM,
∴AB=BM=BC+AD.