浙教版数学九年级上册1.4二次函数的应用 同步练习(含答案)

文档属性

名称 浙教版数学九年级上册1.4二次函数的应用 同步练习(含答案)
格式 docx
文件大小 495.8KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2022-09-23 08:56:50

图片预览

文档简介

1.4二次函数的应用同步精练
一、单选题
1.如图,四边形ABCD的两条对角线互相垂直,AC+BD=12,则四边形ABCD的面积最大值是( ).
A.12 B.18 C.20 D.24
2.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=gt2.其中g取值为9.8m/s2.小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s后落地,则该建筑物的高度约为( )
A.98m B.78.4m C.49m D.36.2m
3.如图和都是边长为的等边三角形,它们的边在同一条直线上,点,重合,现将沿着直线向右移动,直至点与重合时停止移动.在此过程中,设点移动的距离为,两个三角形重叠部分的面积为,则随变化的函数图像大致为( )
A. B.
C. D.
4.某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
A. B.
C. D.
5.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是( )
A.12米 B.13米 C.14米 D.15米
6.关于函数.下列说法正确的是( )
A.无论m取何值,函数图像总经过点和
B.当时,函数图像与x轴总有2个交点
C.若,则当时,y随x的增大而减小
D.当时,函数有最小值
7.竖直上抛物体离地面的高度与运动时间之间的关系可以近似地用公式表示,其中是物体抛出时离地面的高度,是物体抛出时的速度.某人将一个小球从距地面的高处以的速度竖直向上抛出,小球达到的离地面的最大高度为( )
A. B. C. D.
8.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为( )
A. B. C. D.
9.如图,某幢建筑物从2.25米高的窗口用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点离墙1米,离地面3米,则水流下落点离墙的距离是( )
A.2.5米 B.3米 C.3.5米 D.4米
10.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于轴对称, 轴,,最低点 在轴上,高 ,,则右轮廓所在抛物线的解析式为( )
A. B. C. D.
11.已知函数和是关于x的函数,点在函数的图象上,点在函数的图象上,规定:当时,有,那么称函数和具有“性质O”,则下列函数具有“性质O”的是( )
A.和 B.和
C.和 D.和
12.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为
A.60元 B.70元 C.80元 D.90元
二、填空题
13.如图,有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m.把它的截面边缘的图形放在如图所示的直角坐标系中,在对称轴右边1m处,桥洞离水面的高是______米.
14.如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米.如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_____.
15.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.
16.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.
17.如图所示,抛物线与x轴交于点A 和点B,与y轴交于点C,且OA=OC,点M、N是直线x=-1上的两个动点,且MN=2(点N在点M的上方),则四边形BCNM的周长的最小值是______.
三、解答题
18.网络直播销售已经成为一种热门的销售方式,某生产商在一销售平台上进行直播销售板栗.已知板栗的成本价为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w(元).
x(元/kg) 7 8 9
y(kg) 4300 4200 4100
(1)直接写出日销售量y与销售单价x之间的函数关系式为   ;(不用写自变量的取值范围)
(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?
(3)当销售单价在什么范围内时,日获利w不低于42000元?
19.“燃情冰雪,一起向未来”,北京冬奥会于2022年2月4日如约而至,某商家看准商机,进行冬奥会吉祥物“冰墩墩”纪念品的销售,每个纪念品进价40元.规定销售单价不低于44元,且不高于60元.销售期间发现,当销售单价定为44元时,每天可售出300个,由于销售火爆,商家决定提价销售.经市场调研发现,销售单价每上涨1元,每天销量减少10个.
(1)求当每个纪念品的销售单价是多少元时,商家每天获利2640元;
(2)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w元最大?最大利润是多少元?
20.如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.
求二次函数的解析式和直线的解析式;
点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;
在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.
21.某农场有100亩土地对外出租,现有两种出租方式:
方式一 若每亩土地的年租金是400元,则100亩土地可以全部租出.每亩土地的年租金每增加5元土地少租出1亩.
方式二 每亩土地的年租金是600元.
(1)若选择方式一,当出租80亩土地时,每亩年租金是_____元;
(2)当土地出租多少亩时,方式一与方式二的年总租金差最大?最大值是多少?
(3)农场热心公益事业,若选择方式一,农场每租出1亩土地捐出a元给慈善机构;若选择方式二,农场一次性捐款1800元给慈善机构,当租出的土地小于60亩时,方式一的年收入高于方式二的年收入,直接写出a的取值范围.
(注:年收入=年总租金-捐款数)
参考答案
1--10BBABD DCABB 11--12CC
13.
14.
15.
16.112.5
17.
18.【详解】(1)设y与x的函数关系式为:y=kx+b(k≠0),
把x=7,y=4300和x=8,y=4200代入得,

解得,
∴y= 100x+5000.
(2)w=(x 6)( 100x+5000)
=
=
∵a= 100<0,对称轴为x=28,
∴当x=28时,w有最大值为48400元,
∴当销售单价定为28元/kg时,销售这种板栗日获利最大,最大利润为48400元.
(3)当w=42000元时,42000=,
∴x=20或=36,
∴当20≤x≤36时,w≥42000,
又∵6≤x≤30,
∴当20≤x≤30时,日获利w不低于42000元.
19.(1)解:设每件纪念品销售价上涨x元,
由题意得:(x+4)(300–10x)=2640,
整理得:x2﹣26x+144=0,即(x–8)(x–18)=0,
解得:x1=8,x2=18,
∵销售单价不高于60元,
∴x=8,
答:当每个纪念品的销售单价是52元时,商家每天获利2640元.
(2)根据题意得:
w=(x+4)(300–10x),
=–10x2+260x+1200
=–10(x–13)2+2890,
∵–10<0,二次函数图象开口向下,对称轴为直线x=13,
∴当x=13时,w最大且最大值为2890,
∵,
所以,当纪念品的销售单价定为57元时,商家每天销售纪念品获得的利润w最大,最大利润是2890元.
20.解:抛物线的顶点的坐标为,
可设抛物线解析式为,
点在该抛物线的图象上,
,解得,
抛物线解析式为,即,
点在轴上,令可得,
点坐标为,
可设直线解析式为,
把点坐标代入可得,解得,
直线解析式为;
设点横坐标为,则,,

当时,有最大值;
如图,过作轴交于点,交轴于点,作于,
设,则,

是等腰直角三角形,


当中边上的高为时,即,


当时,,方程无实数根,
当时,解得或,
或,
综上可知存在满足条件的点,其坐标为或.
21.(1)若选择方式一,当出租80亩土地时,每亩年租金是:
(元)
故答案为:500;
(2)设出租亩土地,则方式一的每亩年租金为:,
∴方式一的年总租金为:
方式二的年租金为
设方式一与方式二的年总租金差为y元,由题意得,

∴当时,y有最大值为4500
∴当土地出租30亩时,方式一与方式二的年总租金差最大,为4500元;
(3)
设出租亩土地,方式一的年收入为:方式二的年收入为:;
设方式一与方式二的年总租金差为w元,由题意可得,
所以,对称轴为直线

∴对称轴直线

∴当时,w取得最小值
租出的土地小于60亩时,方式 一的年收入高于方式二的年收入,则
即:
解得,,

∴a的取值范围为: