(共61张PPT)
第五章
第2节 其他植物激素
1.除生长素外,植物体内还有哪些植物激素?
2.各种植物激素是怎样相互作用的?
【本节聚焦】
知识回顾
生长素的合成部位和主要作用
1.生长素的合成部位:
芽、幼嫩的叶和发育中的种子
2.生长素的主要作用
①细胞水平上:
②器官水平上:
促进细胞伸长生长、诱导细胞分化等作用
影响器官的生长、发育,如促进侧根和不定根的发生,影响花、叶和果实发育等
植物激素的种类
①生长素
②细胞分裂素
③赤霉素
④脱落酸
⑤乙烯
⑥油菜素内酯
1.乙烯在植物体内能发挥什么作用?
2.在发挥作用时,乙烯的作用方式和生长素的有什么相似之处?
问题探讨
在我国宋元时期某著作中写道:“红柿摘下未熟,每篮用木瓜两三枚放入,得气即发,并无涩味”。这种“气”究竟是什么呢?人们一直不明白。到20世纪60年代,气相层析技术的应用使人们终于弄清楚,是成熟果实释放出的乙烯促进了其他果实的成熟。
讨论:
促进果实成熟
“木瓜”催熟柿子
都能从产生部位运输或扩散至作用部位,微量的物质就可以产生显著的影响。
一、其他植物激素的种类和作用
(一)赤霉素(GA)
1.赤霉素的发现历程
1926年,水稻感染了赤霉菌→ 水稻疯长 → 恶苗病
水稻恶苗病植株(左)与正常植株(右)
[思考1]
引起水稻恶苗病可能的原因是什么?
(1)赤霉菌本身引起的?
(2)还是赤霉菌产生某种化学物质引起的?
[活动1]如何验证?请简要说出设计思路。
将赤霉菌培养基的滤液喷洒到健康水稻幼苗上
→没有感染赤霉菌,却有恶苗病的症状。
恶苗病:赤霉菌产生某种化学物质引起的
一、其他植物激素的种类和作用
(一)赤霉素(GA)
1.赤霉素的发现历程
1926年,水稻感染了赤霉菌→ 水稻疯长 → 恶苗病
水稻恶苗病植株(左)与正常植株(右)
1935年,科学家从培养基滤液中分离出赤霉素
20世纪50年代,科学家发现被子植物体内存在赤霉素。
进一步研究发现赤霉素在植物体中普遍存在,并包括很多种。
科学家发现植物体内激素:细胞分裂素、脱落酸、乙烯、赤霉素、生长素。
赤霉素
合成部位:幼芽、幼根和未成熟的种子
主要作用:促进细胞伸长,从而引起植株增高;促进细胞分裂与分化;促进种子萌发、开花和果实发育
脱落酸
合成部位:根冠、萎蔫的叶片等
主要作用:抑制细胞分裂;促进气孔关闭;促进叶和果实的衰老和脱落;维持种子休眠
乙烯
合成部位:植物体各个部位
主要作用:促进果实成熟;促进开花;促进叶、花、果实脱落
细胞分裂素
合成部位:主要是根尖
主要作用:促进细胞分裂;促进芽的分化、侧枝发育、叶绿素合成
一、其他植物激素的种类和作用
【概念辨析】促进果实发育≠促进果实的成熟
(1)生长素或赤霉素对果实的作用主要是促进果实的发育,
即主要是使子房膨大形成果实及果实体积的增大。
(2)乙烯对果实的作用主要是促进果实的成熟,主要是使果实的
含糖量、口味等果实品质发生变化。
一、其他植物激素的种类和作用
喷施赤霉素植株( A)与对照( B)
赤霉素
赤霉素
一、其他植物激素的种类和作用
细胞分裂素
一、其他植物激素的种类和作用
脱落酸
一、其他植物激素的种类和作用
乙烯
一、其他植物激素的种类和作用
目前尚无法确定油菜素内酯的产生部位,可能在花粉、根和未成熟的种子等部位产生。
主要作用:
促进茎、叶细胞的扩展和分裂,促进花粉管生长、种子萌发等。
第六类植物激素——油菜素内酯
一、其他植物激素的种类和作用
植物激素在植物内的含量虽然微少,但是在调节植物生长发育上的作用却非常重要。一般来说,植物激素对植物生长发育的调控,是通过调控细胞分裂、细胞伸长、细胞分化和细胞死亡等方式实现的。
一、其他植物激素的种类和作用
【深挖教材】植物激素调节植物生长发育
细胞
分裂
细胞伸长
细胞分化
细胞死亡
植物激素对
植物生长发育的调控
通过 调控
实现
植物激素在植物体内的含量虽然微少,但是在调节植物生长发育上的作用却非常重要。(微量和高效)
【相关信息】在菜豆未成熟的种子中,赤霉素含量较高,但也不到种子质量的亿分之一。1kg向日葵新鲜叶片中,只含有几微克细胞分裂素。
各种植物激素的合成部位及生理作用
激素名称 主要合成部位 生理作用
生长素
赤霉素
细胞分裂素
脱落酸
乙烯
幼芽、幼根、未成熟的种子
①促进细胞伸长,从而引起植株增高;
②促进细胞分裂与分化;
③促进种子萌发、开花和果实发育。
主要是根尖
①促进细胞分裂;
②促进芽的分化、侧枝发育、叶绿素合成。
根冠、萎蔫的叶片等
①抑制细胞分裂;②促进气孔关闭;③促进叶和果实的衰老和脱落;④维持种子休眠。
植物体的各个部位
①促进果实成熟;②促进开花;
③促进叶、花、果实脱落;
芽、幼嫩的叶、发育中的种子
①促进细胞伸长生长,诱导细胞分化;
②影响器官的生长、发育。
细胞分裂素
生长素
赤霉素
脱落酸
乙烯
幼嫩的芽、叶和发育中的种子
未成熟的种子
主要是根尖
根冠、萎焉的叶片等
植物各个部位
低浓度促进生长,高浓度抑制生长
促进细胞伸长,从而引起植株增高;促进种子萌发和果实成熟
促进细胞分裂
抑制细胞的分裂,促进叶和果实的衰老、脱落
促进果实成熟
激素种类
合成部位
作用
练一练
植物生长发育
植物激素调节植物生长发育
植物激素
细胞分裂
细胞伸长
细胞分化
细胞死亡
调控
1.赤霉素与生长素的主要生理作用有什么相似之处?又有哪些不同?
2.脱落酸与生长素、赤霉素、细胞分裂素的生理作用有什么不同?
3.赤霉素和乙烯的生理作用可能存在什么关系?
不同植物激素作用的相关性
赤霉素和生长素都能起促进细胞伸长、诱导细胞分化,影响花、果实发育等作用。不同点:赤霉素有促进细胞分裂、促进种子萌发的作用,而生长素没有。
脱落酸往往表现出“抑制”作用
赤霉素和乙烯有可能存在“对抗”关系
思考.讨论
二、植物激素的相互作用
(一)各种植物激素并不是孤立地发挥作用,而是多种激素共同调控植物的生长发育和对环境的适应。
1.植物激素对细胞分裂的调控
细胞分裂
细胞核分裂
细胞质分裂
促进
生长素
细胞分裂素
协同作用
作 用 激 素
促进果实成熟
促进植物生长
诱导愈伤组织分化成根或芽
延缓叶片衰老
促进果实坐果和生长
细胞分裂
乙烯、脱落酸
细胞分裂素、生长素、赤霉素
生长素、细胞分裂素
生长素、细胞分裂素
生长素、细胞分裂素、赤霉素
生长素、细胞分裂素
协同作用
二、植物激素的相互作用
(一)各种植物激素并不是孤立地发挥作用,而是多种激素共同调控植物的生长发育和对环境的适应。
2.植物激素对种子萌发的调控
种子萌发
赤霉素
脱落酸
促进
抑制
抗衡作用
抗衡作用
作 用 起促进作用的激素 起抑制作用的激素
器官脱落
种子发芽
叶片衰老
气孔张开
脱落酸
生长素、细胞分裂素
赤霉素、细胞分裂素
脱落酸
脱落酸
生长素、细胞分裂素
细胞分裂素
脱落酸
0 1 2 3 4 20 22 24 26 28 30 32 34 36
花瓣脱落 果实形成 果实膨大 果实逐渐成熟 果实完全成熟
乙烯相对含量
结论1:在植物的生长发育和适应环境变化的过程中,某种激素的含量会发生变化。
二、植物激素的相互作用
协同
生长素
促进
促进
核分裂
质分裂
细胞分裂
促进
细胞分裂素
抗衡
脱落酸
抑制
促进
种子萌发
赤霉素
生长素浓度低
促进
乙烯增多
抑制
细胞伸长生长
生长素浓度高
促进
抑制
结论2:各种植物激素并不是孤立地起作用,而是多种激素共同调控植物的生长发育和对环境的适应。
二、植物激素的相互作用
花瓣脱落
果实形成
果实膨大
果实逐渐成熟
果实完全成熟
1
2
3
4
20
22
24
26
28
30
32
34
乙烯相对含量
开花后天数/d
图5-10 草莓果实发育和成熟过程中乙烯含量的动态变化
结论3:决定器官生长、发育的,往往不是某种激素的绝对含量而是不同激素的相对含量。
脱落酸
雄花
较高
雌花
赤霉素
较低
二、植物激素的相互作用
②植物组织培养
生长素
细胞分裂素
较高→有利于分化形成根
较低→有利于分化形成芽
细胞分裂素、赤霉素和脱落酸含量/(ng·g-1)鲜重
开花后天数/d
0
7
14
49
56
63
70
84
126
133
140
21
28
35
42
77
91
98
105
112
119
20
40
60
80
100
120
140
160
5
10
15
20
25
生长素含量/(ng·g-1)鲜重
图-5-11 猕猴桃果实发育和成熟过程中激素的动态变化
生长素
脱落酸
细胞分裂素
赤霉素
结论4:植物生长发育的过程中,不同激素的调节还表现出一定的顺序性。
二、植物激素的相互作用
1. 在植物的生长发育和适应环境变化的过程中,某种激素的含量会发生变化。
2. 各种植物激素并不是孤立地起作用,而是多种激素共同调控植物的生长发育和对环境的适应。
3. 不同激素在代谢上还存在着相互作用。
4. 决定器官生长发育的是不同植物激素的相对含量。
5. 在植物生长发育过程中,不同种植物激素的调节还往往表现出一定的顺序性。
总结:植物激素对生命活动的调节的特点
抑制
抑制
相抗衡作用
促进
促进
细胞 分裂素
细胞伸长
细胞分裂
器官脱落
促进
协同
作用
生长素
赤霉素
乙烯
促进
果实成熟
脱落酸
课堂小结
植物激素
多种激素协调作用,调节植物的生命活动
其他植
物激素
生长素
赤霉素(GA)
细胞分裂素
脱落酸
乙烯
【本节小结】
练习与应用
一、概念检测
1.运用植物激素的相关知识,判断下列说法是否正确。
(1)赤霉素决定细胞的分化。 ( )
(2)脱落酸促进果实和叶脱落 ( )
(3)细胞分裂素促进细胞伸长。( )
2.生长素和乙烯都在植物生命活动调节中起重要作用。以下相关叙述,正确的是 ( )
A.植物体内生长素含量会影响乙烯的合成
B.生长素促进植物生长,乙烯促进果实发育
C.生长素是植物自身合成的,乙烯是植物从环境中吸收的
D.生长素在植物体内广泛分布,乙烯只分布在成熟果实中
×
A
√
×
练习与应用
二、拓展应用
1.在自然界存在这样一种现象:小麦、玉米在即将成熟时,如果经历持续一段时间的干热 之后又遇大雨,种子就容易在穗上发芽。请尝试对此现象进行解释(提示:研究表明,脱落酸在高温条件下容易降解)。
【答案】脱落酸能促进种子休眠,抑制发芽。持续一段时间的高温,能使种子中的脱落酸降解。没有了脱落酸,这些种子就不会和其他种子那样休眠了。然后,大雨天气又给在穗上的种子提供了萌发所需要的水分,于是种子就会不适时地萌发。
2.人们常说,一个烂苹果会糟蹋一筐好苹果;社会上也有“坏苹果法则”“坏苹果理论”。请你结合本章所学,谈谈对这些话的理解。
【答案】一个烂苹果会糟蹋一筐好苹果,其中的科学道理是乙烯能促进果实成熟。由此引申出的“坏苹果法则”,则是一种类比思维。
课堂练习
1.下列叙述与所涉及的植物激素对应关系不一致的是( )
A.处理生长期的芦苇,使其纤维长度增加——赤霉素
B.即将成熟的小麦种子持续干热后遇大雨易发芽——脱落酸
C.抑制马铃薯发芽,延长贮藏期——细胞分裂素
D.未成熟的柿子中放入木瓜催熟——乙烯
C
2.下列关于植物激素应用的叙述,错误的是( )
A.植物激素不能直接参与细胞代谢,但可以对植物生命活动进行调节
B.在失重状态下植物激素不能进行极性运输,所以根失去了向地生长的特性
C.赤霉素、细胞分裂素分别通过促进细胞伸长和分裂促进植物生长
D.持续干热再遇数天阴雨,小麦种子易在穗上发芽的原因之一是脱落酸含量减少
B
课堂练习
1.下列叙述与所涉及的植物激素对应关系不一致的是( )
A.处理生长期的芦苇,使其纤维长度增加——赤霉素
B.即将成熟的小麦种子持续干热后遇大雨易发芽——脱落酸
C.抑制马铃薯发芽,延长贮藏期——细胞分裂素
D.未成熟的柿子中放入木瓜催熟——乙烯
2.下列关于植物激素应用的叙述,错误的是( )
A.植物激素不能直接参与细胞代谢,但可以对植物生命活动进行调节
B.在失重状态下植物激素不能进行极性运输,所以根失去了向地生长的特性
C.赤霉素、细胞分裂素分别通过促进细胞伸长和分裂促进植物生长
D.持续干热再遇数天阴雨,小麦种子易在穗上发芽的原因之一是脱落酸含量减少
C
B
【随堂练习】
3.下图表示植物体内赤霉素(GA)和脱落酸(ABA)的形成过程。回答问题:
(1)GA在植物体内的主要
合成部位是幼根、幼芽和
萌发的种子。在解除休眠过程中,GA和ABA表现为______作用。
(2)研究表明,GA能促进色氨酸合成酶的活性,同时抑制生长素氧化酶的活性,这表明GA可以通过__________________从而促进生长;ABA具有调节气孔开度的作用,当土壤干旱缺水,植物体内ABA的含量增多,其意义是_____________________________。
抗衡
调节生长素的含量
降低植物蒸腾作用以适应干旱环境
【随堂练习】
课堂小练
1.农业生产中常运用一些生物学原理,提高产量和改善产品质量,下列叙述错误的是( )
A.利用生长调节剂可培育无籽果实,这种变异是不可遗传的
B.果园汛期漫水后要及时排水,防止根细胞厌氧呼吸产生Z醇导致烂根
C.喷洒乙烯利可促进果实发育,减弱温室瓜果自然授粉不足带来的减产
D.农家肥经分解后可为农作物提供无机盐和CO2
2. 植物激素对植物的生长发育有显著影响,下列关于植物激素的叙述, 错误的是( )
A.幼芽既能合成赤霉素也能合成生长素 B.干旱条件下植物能够合成较多的脱落酸
C.顶芽合成的生长素通过自由扩散运输到侧芽 D.成熟茎韧皮部中的生长素可以进行非极性运输
3.下列关于植物激素及其应用对应正确的是( )
A.赤霉素促进a-淀粉酶的产生 B.细胞分裂素获得无子番茄
C.脱落酸一小麦田内除杂草 D.乙烯促进香蕉的发育
4.下列关于植物激素的说法,错误的是( )
A.是一类有机物 B.都能促进植物生长
C.在植物体内含量很少 D.不能为细胞提供能量
C
C
A
B
4. 在植物的生长发育和适应环境变化的过程中,各种
植物激素并不是孤立地起作用,而是多种激素相互作
用共同调节。请结合材料回答问题:
(1)赤霉素可以促进________转化成生长素,从而促
进细胞生长。
(2)如果用细胞分裂素处理侧芽后,再用生长素处理去顶幼苗的顶端,则生长素不能起抑制侧芽生长的作用。这个实验证明,细胞分裂素可促进侧芽生长,解除__________。
(3)不同浓度的生长素影响某植物乙烯的生成和成熟叶片脱落的实验结果如图所示。该图表明,随乙烯浓度升高,脱落率_____________,农业生产上喷施较高浓度生长素类似物2,4—D可_____(填“提高”或“降低”)脱落率。
色氨酸
顶端优势
先升高后降低
降低
【随堂练习】
课堂练习
1.下列叙述与所涉及的植物激素对应关系不一致的是( )
A.处理生长期的芦苇,使其纤维长度增加——赤霉素
B.即将成熟的小麦种子持续干热后遇大雨易发芽——脱落酸
C.抑制马铃薯发芽,延长贮藏期——细胞分裂素
D.未成熟的柿子中放入木瓜催熟——乙烯
C
2.下列关于植物激素应用的叙述,错误的是( )
A.植物激素不能直接参与细胞代谢,但可以对植物生命活动进行调节
B.在失重状态下植物激素不能进行极性运输,所以根失去了向地生长的特性
C.赤霉素、细胞分裂素分别通过促进细胞伸长和分裂促进植物生长
D.持续干热再遇数天阴雨,小麦种子易在穗上发芽的原因之一是脱落酸含量减少
B
3. 在植物的生长发育和适应环境变化的过程中,各种
植物激素并不是孤立地起作用,而是多种激素相互作
用共同调节。请结合材料回答问题:
(1)赤霉素可以促进________转化成生长素,从而促
进细胞生长。
(2)如果用细胞分裂素处理侧芽后,再用生长素处理去顶幼苗的顶端,则生长素不能起抑制侧芽生长的作用。这个实验证明,细胞分裂素可促进侧芽生长,解除__________。
(3)不同浓度的生长素影响某植物乙烯的生成和成熟叶片脱落的实验结果如图所示。该图表明,随乙烯浓度升高,脱落率_____________,农业生产上喷施较高浓度生长素类似物2,4—D可_____(填“提高”或“降低”)脱落率。
色氨酸
顶端优势
先升高后降低
降低
拓展应用
1.脱落酸能促进种子休眠,抑制发芽。持续一段时间的高温,能使种子中的脱落酸降解。没有了脱落酸,这些种子就不会和其他种子那样休眠了。然后,大雨天气又给在穗上的种子提供了萌发所需要的水分,于是种子就会不适时地萌发。
2.一个烂苹果会糟蹋一筐好苹果,其中的科学道理是乙烯能促进果实成熟。由此引申出的“坏苹果法则”,则是一种类比思维。
(1)生长素和乙烯均能促进果实成熟 ( )
(2)油菜素内酯这种植物激素能促进茎、叶细胞的扩展和分裂等 ( )
(3)脱落酸能促进气孔关闭等 ( )
(4)赤霉菌能产生促进植株增高的植物激素——赤霉素 ( )
判断常考语句,澄清易混易错
如图表示苹果生长发育时期几种激素的动态变化,图中甲、乙、丙三条曲线依次代表三种激素。下列说法正确的是
A.甲激素能促进细胞分裂
B.乙激素的主要作用是促进果实成熟
C.苹果在成熟期只受丙激素的影响
D.乙、丙两种激素主要作用是促进细胞衰老
√
典题应用
1.下列关于植物激素的叙述,正确的是( )
A. 赤霉素的主要作用是引起茎秆加粗
B. 细胞分裂素一般在根尖合成
C. 生长素只能促进植株的生长
D. 乙烯是一种气体激素,其主要生理作用是促进果实发育
B
2.某同学查资料得知细胞分裂素可解除顶端优势。为研究细胞分裂素的作用部位(如图所示),该同学做了相关实验:将多株生长状况相同的良好幼苗均分为两组,用未经处理的幼苗作对照组,用在①②处同时涂抹等量适宜浓度的细胞分裂素溶液的幼苗作实验组,以观察其生长状况。下列对实验组的设计评价合理的是( )
A.实验组设计正确,能研究细胞分裂素解除顶端优势的作用部位
B.实验组设计错误,应选两组完整幼苗分别在①②处涂抹细胞分裂素
C.实验组设计错误,应切除②处后在①处涂抹细胞分裂素
D.实验组设计错误,应选两组切除②处的幼苗并分别在①②处涂抹细胞分裂素
B
判断常考语句,澄清易混易错
(1)植物的生长发育和适应环境变化的过程中,某种激素的含量不会发生变化 ( )
(2)各种植物激素并不是孤立地起作用,而是多种激素共同调控植物的生长发
育和对环境的适应 ( )
(3)生长素主要促进细胞质的分裂 ( )
(4)黄瓜茎端的脱落酸与赤霉素的比值较高,有利于分化形成雄花 ( )
典题应用
及时反馈 知识落实
为探究生长素和乙烯对某植物生长的影响,科学家在该植物某一生长周期内,发现茎中两种激素的含量和茎段生长情况如图所示。下列推测正确的是
A.茎的伸长与生长素的促进作用有关,与
乙烯无关
B.生长素浓度达到一定值时,可能促进乙
烯的合成
C.生长素促进乙烯合成,两者对茎段生长有协同作用
D.图中a、b两个时刻,该植物茎段的生长速度相同
√
2.通常叶片中叶绿素含量下降可作为其衰老的检测指标。为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸馏水、细胞分裂素(CTK)、脱落酸(ABA)、CTK+ABA溶液中,再将各组置于光下。一段时间内叶片中叶绿素含量变化趋势如图所示。据图判断,下列叙述错误的是( )
A.细胞分裂素能延缓该植物离体叶片的衰老
B.本实验中CTK对该植物离体叶片的作用可被ABA削弱
C.可推测ABA组叶绿体中NADPH合成速率大于CTK组
D.可推测施用ABA能加速秋天银杏树的叶由绿变黄的过程
C
3.如图表示苹果生长发育时期几种激素的动态变化,图中甲、乙、丙三条曲线依次代表三种激素。下列说法正确的是
A.甲激素能促进细胞分裂
B.乙激素的主要作用是促进果实成熟
C.苹果在成熟期只受丙激素的影响
D.乙、丙两种激素主要作用是促进细胞衰老
√
处理 结果
完整植株 雌、雄株各占一半
去部分根 雄株占多数
去部分根+施用细胞分裂素 雌株占多数
去部分叶 雌株占多数
去部分叶+施用赤霉素 雄株占多数
4.不同处理对某植物性别分化的影响如下表所示,
下列叙述正确的是 ( )
A. 根产生的赤霉素能促进雌株形成
B. 叶产生了促进雌株形成的细胞分裂素
C. 若对完整植株施用赤霉素合成抑制剂
则雌株数量增多
D. 赤霉素和细胞分裂素对性别分化的作用是不相互对抗的
C
5.将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(1)经干旱处理后,该植物根细胞的吸水能力________。
(2)与干旱处理前相比,干旱处理后该植物的光合速率会________,出现这种变化的主要原因是__________________________________________________。
增强
降低
气孔开度减小使供应给光合作用所需的CO2减少
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
取ABA缺失突变体植株在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
5.将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
取ABA缺失突变体植株在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
5.将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
取ABA缺失突变体植株在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
5.将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
取ABA缺失突变体植株在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
5.将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
取ABA缺失突变体植株在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
5.将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
取ABA缺失突变体植株在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
5.将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
取ABA缺失突变体植株在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
5.将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
取ABA缺失突变体植株在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
5.将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
取ABA缺失突变体植株在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
5.将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。