课 时 授 课 计 划 年 月 日
课 题 §2.2一元二次方程的解法(3)
课 时教 学目 标 1、理解一元二次方程求根公式的推导过程.2、会用公式法解一元二次方程.
教 学 设 想 重点:用公式法解一元二次方程.难点:一元二次方程的求根公式的推导过程比较复杂,涉及多方面的知识和能力,是本节的难点.
教 学 程 序 与 策 略
一、引入新课用配方法解下列一元二次方程完善“配方法”解方程的基本步骤★一除、二移、三配、四开平方、五解.二、新课学习1.做一做:你能用配方法解一般形式的一元二次方程(a≠0)吗?处理:给学生充足的时间做一做,配方法掌握好的学生最后求解的结果可能不会考虑到的条件,也可能答案不够简练;然后教师引导学生再去探索.思考:,方程有实数解吗?一般地,对于一元二次方程(a≠0),如果,那么方程的两个根为这个公式就叫做一元二次方程的求根公式. 利用求根公式,由一元二次方程的系数a,b,c,直接求得一元二次方程的根.这种解一元二次方程的方法叫做公式法.(它是解一元二次方程的一把万能钥匙)2.现学现用:填空(用公式法解方程)课内练习说明:利用求根公式,就是代入公式求值,关键是确定a,b,c的值,目的就是应用求根公式时,应将方程化成一般式.进而引导学生总结出公式法解一元二次方程的基本步骤(1)把方程化成一般形式,并写出a,b,c的值.(2)求出的值.
教 学 程 序 与 策 略
(3)代入求根公式 : (4)写出方程的解3.试一试:用公式法解下列方程;; ;; 让学生独立完成,师生共同评价,由(3),(5)说明方程根的情况:4.问:解一元二次方程的方法都有哪些?说明:至于选择哪一个方法解一元二次方程,看你觉得哪个方法好用或方便就用哪个.选择适当的方法解下列方程;;;;(5)先化成一般式,再用公式法.三、课堂小结请谈谈你的收获!1.一元二次方程的求根公式.(公式成立的条件)2.公式法解一元二次方程的基本步骤四、布置作业P35-36课本作业题A组必做,B组选做作业本
教后反思录课 时 授 课 计 划 年 月 日
课 题 2.3一元二次方程的应用(2)
课 时教 学目 标 (1)继续探索一元二次方程的实际应用,进一步体验到列一元二次方程解应用题的应用价值;(2)进一步掌握列一元二次方程解应用题的方法和技能。
教 学 设 想 本节的重点是继续探索一元二次方程的应用;“合作学习”的问题较为复杂,计算量大是本节教学的难点。
教 学 程 序 与 策 略
创设情境,引入新课提出问题:(1)如何把一张长方形硬纸片折成一个无盖的长方体纸盒?(学生动手实践,并发表意见) (2)无盖长方体纸盒的高与裁去的四个小正方形的边长有什么关系?例题讲解例3:如图1有一张长40cm,宽25cm的长方形硬纸片,裁去角上四个小正方形之后,折成如图2那样的无盖纸盒,若纸盒的底面积是450cm2,那么纸盒的高是多少? 设问:(1)若设纸盒的高为x,那么裁去的四个正方形的边长为多少?(2)底面的长和宽能否用含x的代数式表示?(用虚线画出纸盒的底面)(3)你能找出题中的等量关系吗?你怎样列方程?(4)请每位同学自己检验两根,发现什么?课内练习:第40页作业题第3题合作学习:一轮船以30 Km/h的速度由西向东航行(如图),在途中接到台风警报,台风中心正以20 Km/h的速度由南向北移动。已知距台风中心200 Km的区域(包括边界)都属于受台风影响区。当轮船接到台风警报时,测得BC=500Km,BA=300 Km。(1)如果轮船不改变航向,轮船会不会进入台风影响区?你采用什么方
教 学 程 序 与 策 略
法来判断?(2)如果你认为轮船会进入台风影响区,那么从接到警报开始,经多少时间就进入台风影响区?(3)如果把航速改为10 Km/h,结果怎样?提示:(1)若以接到台风警报开始,经t时轮船到达C1,台风中心到达B1,那么船是否受到台风影响与什么有关系?(2)当B1C1符合什么条件时,船会受到台风的影响?(3)你能用关于t的代数式表示B1C1两点之间的距离吗?(4)你能用一元二次方程表示船开始受台风影响的条件吗?(学生4人一组进行充分讨论并利用多媒体动画制作,让学生更容易理解)课堂小结:提问:通过本堂课的学习,你学会了什么?布置作业:作业本2.3(2) 课本P40:作业题1 ,2必做。4,5,6选做
教后反思录课 时 授 课 计 划 年 月 日
课 题 §2.1一元二次方程(二)
课 时教 学目 标 1.掌握因式分解法解一元二次方程的基本步骤.2.会用因式分解法解一元二次方程.
教 学 设 想 【教学重点】用因式分解法解一元二次方程.【教学难点】例3方程中含有无理系数,需将常数项2看成,才能分解因式,是本节教学的难点.
教 学 程 序 与 策 略
复习引入1、将下列各式分解因式:教师指出:把一个多项式化成几个整式的积的形式叫做因式分解.2、你能利用因式分解解下列方程吗?请中等学生上来板演,其余学生写在练习本上,教师巡视.之后教师指出:像上面这种利用因式分解解一元二次方程的方法叫做因式分解法。(板书课题)新课学习归纳因式分解法解一元二次方程的步骤:教师首先指出:当方程的一边为0,另一边容易分解成两个一次因式的积时,用因式分解法求解方程比较方便.然后归纳步骤:(板书)若方程的右边不是零,则先移项,使方程的右边为零;将方程的左边分解因式;根据若M·N=0,则M=0或N=0,将解一元二次方程转化为解两个一元一次方程。2、讲解例2.(1)解下列一元二次方程:教师在讲解中不仅要突出整体的思想:把x-2及3x-4和4x-3看成整体,还要突出化归的思想:通过因式分解把一元二次方程转化为一元一次方程来求解.并且教师要认真板演,示范表述格式,强调两个一元一次方程之间的连结词要用“或”,而不能用“且。(2)想一想:将第(1),(2),(3)题的解分别代人原方程的左、右两边,等式成立吗?
教 学 程 序 与 策 略
(3)归纳用因式分解法解的一元二次方程的基本类型:①先变形成一般形式,再因式分解:②移项后直接因式分解.在选择方法时通常可先考虑移项后能否直接分解因式,然后再考虑化简后能否分解因式。讲解例3. 解方程在本例中出现无理系数,要注意引导学生将将常数项2看成,另外对于方程中出现两个相等的根,教师要做好板书示范。3、补充例4 若一个数的平方等于这个数本身,你能求出这个数吗?首先让学生设出未知数,列出方程(),再让学生求解.根据学生的求解情况强调:对于此类方程不能两边同时约去x,因为这里的x可以是0。三、巩固练习:课本第32页课内练习。四、体会和分享能说出你这节课的收获和体验让大家与你分享吗?先由学生自由发言,教师再投影演示:1.能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;2.用分解因式法解一元二次方程的一般步骤:(1)将方程的右边化为零;(2)将方程的左边分解为两个一次因式的乘积;(3)令每一个因式为零,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.3. 用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0.4、用分解因式法解一元二次方程的注意点:1.必须将方程的右边化为零;2.方程两边不能同时除以含有未知数的代数式.5、数学思想:整体思想和化归思想.五.课后作业1.书本作业题;2.作业本
教后反思录课 时 授 课 计 划 年 月 日
课 题 2.3一元二次方程的应用(1)
课 时教 学目 标 经历一元二次方程的实际应用,体验一元二次方程的应用价值.会列一元二次方程解应用题.
教 学 设 想 本节教学的重点是列一元二次方程解应用题.例2的数量关系比较复杂,学生不容易理解,是本节教学的难点.
教 学 程 序 与 策 略
一、引例:要做一个高是8cm,底面的长比宽多5cm,体积是528的长方体木箱,问底面的长和宽各是多少?二、回顾:1、以前我们已经经历了几次列方程解应用题?①列一元一次方程解应用题;②列二元一次方程组解应用题;③列分式方程解应用题.在思想方法和解题步骤上有许多共同之处.2、提问:列方程解应用题的基本步骤怎样?①审(审题);②找(找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系、相等关系);③设(设元,包括设直接未知数或间接未知数);④表(用所设的未知数字母的代数式表示其他的相关量);⑤列(列方程);⑥解(解方程);⑦检验(注意根的准确性及是否符合实际意义).对照步骤,引导学生完成解题过程板书:(主题)一元二次方程的应用三、新课1.多媒体显示课本例1(1)着重指清“每盆每增加1株,平均单株盈利就减少0.5元”的含义.(2)思考:直接设每盆植x株好吗?为什么?启发:设什么为x才好?(3)指导学生用x表示其他相关量.(4)问: 你怎样列方程呢?指导学生解方程,并进行检验.请每位同学自己检验两根.发现什么?2.完成课内练习1:学生完成练习后出示正确答案核对(略)3.讲解例2;显示例2(屏幕显示),注意:叙述年平均增长率时,要有明确规范的说法,如:“从何年到何年的年平均增长率”,“从何月到何月的月平均
教 学 程 序 与 策 略
增长率”,不要随用其他的说法,否则学生解题时容易产生歧义.请大家以学习小组为单位讨论如下问题,然后以组为单位回答:(1)增长率与什么有关系?(增长率与时间相关.必须弄清楚从何年何月何日到何年何月何日的增长率.)(2)年平均增长率怎么算?纠正学生的各种错误回答并小结;经过两年的年平均变化率x与原量a和现量b之间的关系是:(等量关系).(3)x的正负性有什么意义?(当x>0时表增长,当x<0时表示下降.)4.完成课内练习2;四、课堂小结:这节我们学到了什么?学会了列一元二次方程解应用题.列一元二次方程解应用题的步骤.经过两年的年平均变化率与原量a和b之间的关系是: (等量关系).对例1,使用间接设元更能表示其他的相关量.五、作业布置:(1)完成课本“作业题”. (2)作业本
教后反思录课 时 授 课 计 划 年 月 日
课 题 2.2 一元二次方程的解法(1)
课 时教 学目 标 (1)、理解直接开平方法解一元二次方程的依据是平方根的意义。(2)、会用直接开平方法解一元二次方程。(3)、理解配方法。(4)、会用配方法解二次项系数为1的一元二次方程。
教 学 设 想 [教学重点] 掌握直接开平方法及配方法解某些一元二次方程。[教学难点] 理解掌握配方法。
教 学 程 序 与 策 略
复习旧知,引入新课1 用因式分解法解方程x2-4=0。2 若将方程先移项,得:x2=4。你能直接得到该方程的解吗?其解是什么?3 引入新课,板书课题。[讲解新课]1.了解直接开平方法解一元二次方程的概念。将方程:x2-4=0,先移项,得:x2=4。因此,x=± 2即,x1=2,x2=-2。讲(或提问)到此,指出 :这种解某些一元二次方程的方法叫做开平方法。2. 初步掌握直接开平方法解一元二次方程。提问:用直接开平方法解下列方程:1、x2-144=0; 2、x2-3=0;3、x2+16=0; 4、x2=0。(1、x1=12,x2=-12;2、x1= ,x2=- ;3、无解——负数没有平方根;4、x=0——0有一个平方根,它是0本身)。3. 深刻掌握直接开平方法解一元二次方程例1 解方程:(1) 3x2-27=0 (2) (x+3)2=2。说明与分析:此例要求解出方程的根,同时通过此例的学习也为进一步解公式法作准备。实际上,我们将用此例以及类似的题目推导出一元二次方程的另一解法——配方法。可以看出,原方程中x+3是2的平方根,练习:解下列方程:1、(x+4)2=3; 2、(3x+1)2=-3。(1、x1=-4,x2=+ 4 ; 2、无解。)4. 合作学习(1) 想一想:你能用直接开平方法解方程x2+6x+7=0吗?(2) 你能将方程x2+6x+7=0转化为(x+a)2=b的形式吗 (3) 请与同伴尝试解这个方程。5. 探索配方法解一元二次方程一般步骤将方程:x2+6x+7=0的常数项移到右边,并将一次项6x改写成2·x·3,得:x2+2·x·3=-7。由此可以看出,为使左边成为完全平方式,只需在方程两边都加上32,即:x2+2·x·3+32=-7+32, (x+3)2=2。解这个方程,得:x1=-3+ ,x2=-3- 。6. 总结配方法的概念:把一个一元二次方程左边配成一个完全平方式,右边为一个非负数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法。7. 做一做——进一步理解配方的过程。填空:1、x2+6x+ =(x+ )2; 2、x2-5x+ =(x- )2;3、x2+ x+ =(x+ )2; 4、x2-9x+ =(x- )2填空后总结配方的关键:对二次项系数为1的一元二次方程x2+bx=c配方,只需在方程两边都加上一次项系数一半的平方。8. 教学例2 用配方法解下列一元二次方程(1) x2+6x=1 (2) x2=6+5x解答过程由学生口述,教师板书的形式完成。通过例题2的讲解,帮助学生总结出配方的步骤:
教 学 程 序 与 策 略
先把方程x2+bx+c=0 移项,得 x2+bx=-c方程的两边同加一次项系数一半的平方,得x2+bx+=-c+, 得=若-4c+b2≥0,就可以用因式分解法或开平方法解出方程的根9. 课堂练习课本P30课内练习第3、4两题。三、课堂小结(1)开平方法可解下列类型的一元二次方程:x2=b(b≥0);(x-a)2=b(b≥0)。根据平方根的定义,要特别注意:由于负数没有平方根,所以,上列两式中的b≥0,当b<0时,方程无解。(2) 配方的关键是:在方程的两边都加上一次项系数一半的平方。四、课外作业:课本P31的作业题
教后反思录课 时 授 课 计 划 年 月 日
课 题 2.1一元二次方程(1)
课 时教 学目 标 经历一元二次方程概念的发生过程.理解一元二次方程的概念.了解一元二次方程的一般形式,会辨认一元二次方程的二次项系数、一次项系数和常数项.
教 学 设 想 本节教学重点是一元二次方程的概念,包括它的一般形式.例1第(4)题包含了代数式的变形和等式变形两个方面,计算容易产生差错,是本节教学的难点.
教 学 程 序 与 策 略
一、合作学习,探究新知1、列出下列问题中关于未知数x的方程:(1)把面积为4平方米的一张纸分割成如图所示的正方形和长方形两个部分,求正方形的边长。设正方形的边长为x,可列出方程______________;(2)据国家统计局公布的数据,浙江省2001年全省实现生产总值6万亿元,2003年生产总值达9200亿元,求浙江省这两年实现生产总值的年平均增长率。设年平均增长率为x,可列出方程______________;(3)从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?设竹竿为x尺,可列出方程______________。学生自主探索,并互相交流,自己列出方程。2、观察上面所列方程,说出这些方程与一元一次方程的共同和不同之处.学生各抒己见,发表自己的发现:共同点:①它的左右两边都是整式,②只含一个未知数;不同点:未知数的最高次数是2。二、得出新知,运用强化1、教师指出符合上述特征的方程叫做一元二次方程.板书课题及一元二次方程的定义并指出:能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根)。2、判断下列方程是否是一元二次方程:3、判断未知数的值x=-1,x=0,x=2是不是方程的根。通过此题的求解向学生说明:一元二次方程的解(或根)的概念与一元一次方程的解(或根)的概念类似,但解的个数不同。4. 一元二次方程概念的延伸提问:一元二次方程很多吗 你有办法一下写出所有的一元二次方程吗 引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式ax2+bx+c=0(a≠0)1)提问a=0时方程还是一无二次方程吗 为什么 (如果a=0、b≠0就成了一元一次方程了)。2)讲解方程中ax2、bx、c各项的名称及a、b的系数名称.3)强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按未知数的次数从高到低排列,特别注意的是“=”的右边必须整理成0。5、强化概念例1 把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数、常数项:
在本例中教师要讲清方程变形时,哪些属于代数式变形,运用了什么法则;哪些属于等式变形,依据什么性质。并板书示范解题过程。2.练习:做课内练习第2、3题
3、提高练习:作业题5、7。三、课堂小结 (1)本节课主要介绍了一类很重要的方程—一元二次方程(方程两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程); (2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0),并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现,但二次项必须存在。特别注意的是“=”的右边必须整理成0; (3)要很熟练地说出随便一个一元二次方程中二次项、一次项、常数项:二次项系数、一次项系数.四、布置作业1、作业本2.1(1)2、书本作业题
教后反思录课 时 授 课 计 划 年 月 日
课 题 §2.2(第二课时)一元二次方程的解法
课 时教 学目 标 1.巩固用配方法解一元二次方程的基本步骤;2.会用配方法解二次项系数的绝对值不为1的一元二次方程。
教 学 设 想 1、教学的重点是用配方法解二次项系数的绝对值不是1的一元二次方程。2、当二次项系数为小数或分数时,用配方法解一元二次方程是本节教学的难点。
教 学 程 序 与 策 略
回顾:解方程板演(并对的练习进行讲评)一元二次方程开平方法和配方法(a=1)解法的区别与联系(思考与领悟)开平方法:形如①先把移项得②方程两边同时加一次项系数一半的平方,得,即,当时,就可以通过开平方法求出方程的根二、新课教学1.引例(当时)解方程观察与思考,小组讨论:领悟将二次项系数化为1的转化思想2.例3 用配方法解下列一元二次方程(1)(2)遇到二次项系数不是1的一元二次方程,只要将方程的两边都除以二次项系
教 学 程 序 与 策 略
数,转化为我们能用配方法解二次项系数是1的一元二次方法。课堂练习3.课本P32页,课内练习1学生完成解题后出示答案4.增加二次项系数为小数与分数的方程:用配方法解下列方程(1)(2)5.课本P32页,课内练习2学生先做,后挑选部分屏幕展示课堂小结问:这一节课学习了什么四、布置作业:完成课本作业(做在书上)和作业本(2)
教后反思录