直线与圆,圆与圆的位置关系典型例题剖析
一:与圆相关概念的应用
圆的定义判断点与圆,直线与圆、圆与圆的位置关系
【例1】已知⊙O的半径为3cm,A为线段OM的中点,当OA满足:
(1)当OA=1cm时,点M与⊙O的位置关系是 .
(2)当OA=1.5cm时,点M与⊙O的位置关系是 .
(3)当OA=3cm时,点M与⊙O的位置关系是 .
【例2】 ⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是( ).
A. 相交 B. 相切 C. 相离 D. 无法确定
【例3】(2012上海市)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( )
外离 B.相切 C.相交 D.内含
【例4】如图,平面直角坐标系中,⊙O半径长为1.点⊙P(a,0),⊙P的半径长为2,把⊙P向左平移,当⊙P与⊙O相切时,a的值为【 】
(A)3 (B)1 (C)1,3 (D)±1,±3
练习:1.已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为【 】
A.0 B.1 C.2 D.无法确定
2. 若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是( )
A.内含 B.内切 C.外切 D.外离
3. 已知⊙O1与⊙O2外切,O1O2=8cm,⊙O1的半径为5cm,则⊙O2的半径是【 】
A. 13cm. B. 8cm C. 6cm D. 3cm
4.定圆O的半径是4cm,动圆P的半径是2cm,动圆在直线l上移动,当两圆相切时,OP的值是【 】
A.2cm或6cm B.2cm C.4cm D.6cm
5.在平面直角坐标系xOy中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有 ▲ 个.
二:判断圆的切线的方法及应用
判断圆的切线的方法有三种:
(1)与圆有惟一公共点的直线是圆的切线;
(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;
(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.
【例6】如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于( )
A.15° B.20° C.30° D.70°
【例7】Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为( )
A. 2cm B. 2.4cm C. 3cm D. 4cm
【例8】如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为 .
【例9】 如图,点C在以AB为直径的半圆O上,延长BC到点D,使得CD=BC,过点D作DE⊥AB于点E,交AC于点F,点G为DF的中点,连接CG、OF、FB.
(1)(5分)求证:CG是⊙O的切线;
(2)(5分)若△AFB的面积是△DCG的面积的2倍,求证:OF∥BC.
【答案】证明:(1)如图,连接OC,
∵AB为⊙O的直径,∴∠ACB=900。
∵在Rt△DCF中,DG=FG,∴CG=DG=FG。
∴∠CFG=∠FCG。
又∵∠CFG=∠AFE,∴∠FCG=∠AFE。
∵OA=OC,∴∠EAF=∠OCA。
又∵DE⊥AB,∴∠EAF+∠AFE=90°。 ∴∠OCA+∠FCG=90°,即∠GCO=90°。
又∵OC是⊙O的半径,∴CG为⊙O的切线。
(2)∵DG=FG,∴。
∵DC=CB,∴,∴。
又∵,∴ 。∴AF=FC。
又∵OA=OB,∴OF是△ABC的中位线。∴OF∥BC。
【考点】切线的判定,圆周角定理,直角三角形斜边的中线性质,三角形中位线的判定和性质。
【分析】(1)连接OC.欲证CG是⊙O的切线,只需证明∠CGO=90°,即CG⊥OC。
根据直角三角形ABC、直角三角形DCF的面积公式,以及直角三角形斜边的中线等于斜边的一半求得AC=2AF;然后根据三角形中位线的判定和性质证得结论。
【例10】已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.
专题:几何综合题.
分析:(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.
(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.
解答:(1)证明:连接OD.
∵OA=OD,
∴∠OAD=∠ODA.(1分)
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.(2分)
∴DO∥MN.(3分)
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.(4分)
∵D在⊙O上,
∴DE是⊙O的切线.(5分)
(2)解:∵∠AED=90°,DE=6,AE=3,
∴.(6分)
连接CD.
∵AC是⊙O的直径,
∴∠ADC=∠AED=90°.(7分)
∵∠CAD=∠DAE,
∴△ACD∽△ADE.(8分)
∴.
∴.
则AC=15(cm).(9分)
∴⊙O的半径是7.5cm.(10分)
点评:本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
练习:1. 如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则的长为【 】
A.π B.2π C.3π D.5π
2.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为( )
(
O
B
C
A
)
A.40° B.50° C.65° D.75°
3. 如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切与点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为【 】
r B. r C.2r D. r
4. 如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.
(1)求BC的长;
(2)求证:PB是⊙O的切线.
5. 如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.
(1)求证:BC是⊙O的切线;
(2)连接AF,BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA=,求⊙O的半径.
6.如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标;
(3)求直线AB的解析式.
7. 如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.
(1)求证:CF是⊙O的切线;
(2)求证:△ACM∽△DCN;
(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.
三:直线与圆,圆与圆相关计算
主要利用圆的基本性质,勾股定理及三角形的知识进行计算
【例11】(1)如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为 ▲ cm2.
(2)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是 ▲ .
【答案】12。
【考点】相切两圆的性质,矩形的判定和性质,含30度角的直角三角形的性质,勾股定理;;切线长定理。
【分析】∵⊙O2的面积为π,∴⊙O2的半径是1。
∵AB和AH是⊙O1的切线,∴AB=AH。
设⊙O2的半径是R,连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F。
∵⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线DC、DA,∠ADC=60°
∴D.O2、O1三点共线,∠CDO1=30°。
∴∠DAO1=60°,∠O2EC=∠ECF=∠CFO2=90°。
∴四边形CFO2E是矩形,
∴O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°。
∴DO2=2O2E=2,∠HAO1=60°,R+1=2(R﹣1),解得:R=3。
即DO1=2+1+3=6,
在Rt△CDO1中,由勾股定理得:CD=。
∵∠HO1A=90°﹣60°=30°,HO1=3,∴AH==AB。
∴四边形ABCD的面积是:×(AB+CD)×BC=×(+)×(3+3)=12。
【例12】(2012浙江宁波)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为
直径的半圆O经过点E,交BC于点F.
(1)求证:AC是⊙O的切线;
(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.
【答案】解:(1)连接OE。
∵OB=OE,∴∠OBE=∠OEB。
∵BE是△ABC的角平分线,∴∠OBE=∠EBC。
∴∠OEB=∠EBC。∴OE∥BC 。
∵∠C=90°,∴∠AEO=∠C=90° 。
∴AC是⊙O的切线。
(2)连接OF。
∵sinA=,∴∠A=30° 。
∵⊙O的半径为4,∴AO=2OE=8。
∴AE=4,∠AOE=60°,∴AB=12。
∴BC=AB=6,AC=6。∴CE=AC﹣AE=2。
∵OB=OF,∠ABC=60°,∴△OBF是正三角形。
∴∠FOB=60°,CF=6﹣4=2。∴∠EOF=60°。
∴S梯形OECF=(2+4)×2=6, S扇形EOF=。
∴S阴影部分=S梯形OECF﹣S扇形EOF=6﹣。
【考点】切线的判定,等腰三角形的性质,平行的判定和性质,特殊角的三角函数值,扇形面积的计算。
【分析】(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线。
(2)连接OF,利用S阴影部分=S梯形OECF-S扇形EOF求解即可。
【例13】已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.
(Ⅰ)如图①,若∠BAC=250,求∠AMB的大小;
(Ⅱ)如图②,过点B作BD⊥AC于点E,交⊙O于点D,若BD=MA,求∠AMB的大小.
【答案】解:(Ⅰ)∵MA切⊙O于点A,∴∠MAC=90°。
又∠BAC=25°,∴∠MAB=∠MAC-∠BAC=65°。
∵MA、MB分别切⊙O于点A、B,∴MA=MB。
∴∠MAB=∠MBA。
∴∠MAB=180°-(∠MAB+∠MBA)=50°。
(Ⅱ)如图,连接AD、AB,
∵MA⊥AC,又BD⊥AC,
∴BD∥MA。
又∵BD=MA,∴四边形MADB是平行四边形。
又∵MA=MB,∴四边形MADB是菱形。∴AD=BD。
又∵AC为直径,AC⊥BD,
∴ AB = AD 。
∴AB=AD=BD。∴△ABD是等边三角形。∴∠D=60°。
∴在菱形MADB中,∠AMB=∠D=60°。
【考点】切线的性质,等腰三角形的性质,三角形内角和定理,圆周角定理,菱形的判定与性质,等边三角形的判定和性质。
【分析】(Ⅰ)由AM与圆O相切,根据切线的性质得到AM垂直于AC,可得出∠MAC为直角,再由∠BAC的度数,用∠MAC-∠BAC求出∠MAB的度数,又MA,MB为圆O的切线,根据切线长定理得到MA=MB,利用等边对等角可得出∠MAB=∠MBA,由底角的度数,利用三角形的内角和定理即可求出∠AMB的度数。
(Ⅱ)连接AB,AD,由直径AC垂直于弦BD,根据垂径定理得到A为优弧BAD 的中点,根据等弧对等弦可得出AB=AD,由AM为圆O的切线,得到AM垂直于AC,又BD垂直于AC,根据垂直于同一条直线的两直线平行可得出BD平行于AM,又BD=AM,利用一组对边平行且相等的四边形为平行四边形得到ADBM为平行四边形,再由邻边MA=MB,得到ADBM为菱形,根据菱形的邻边相等可得出BD=AD,进而得到AB=AD=BD,即△ABD为等边三角形,根据等边三角形的性质得到∠D为60°,再利用菱形的对角相等可得出∠AMB=∠D=60°。
【例14】半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.
(1)过点B作的一条切线BE,E为切点.
①填空:如图1,当点A在⊙O上时,∠EBA的度数是 30° ;
②如图2,当E,A,D三点在同一直线上时,求线段OA的长;
(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.
考点: 圆的综合题.
分析: (1)①根据切线的性质以及直角三角形的性质得出∠EBA的度数即可; ②利用切线的性质以及矩形的性质和相似三角形的判定和性质得出=,进而求出OA即可; (2)设∠MON=n°,得出S扇形MON=×22=n进而利用函数增减性分析①当N,M,A分别与D,B,O重合时,MN最大,②当MN=DC=2时,MN最小,分别求出即可.
解答: 解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O上时,过点B作的一条切线BE,E为切点, ∴OB=4,EO=2,∠OEB=90°, ∴∠EBA的度数是:30°; ②如图2, ∵直线l与⊙O相切于点F, ∴∠OFD=90°, ∵正方形ADCB中,∠ADC=90°, ∴OF∥AD, ∵OF=AD=2, ∴四边形OFDA为平行四边形, ∵∠OFD=90°, ∴平行四边形OFDA为矩形, ∴DA⊥AO, ∵正方形ABCD中,DA⊥AB, ∴O,A,B三点在同一条直线上; ∴EA⊥OB, ∵∠OEB=∠AOE, ∴△EOA∽△BOE, ∴=, ∴OE2=OA OB, ∴OA(2+OA)=4, 解得:OA=﹣1±, ∵OA>0,∴OA=﹣1; 方法二: 在Rt△OAE中,cos∠EOA==, 在Rt△EOB中,cos∠EOB==, ∴=, 解得:OA=﹣1±, ∵OA>0,∴OA=﹣1; 方法三: ∵OE⊥EB,EA⊥OB, ∴由射影定理,得OE2=OA OB, ∴OA(2+OA)=4, 解得:OA=﹣1±, ∵OA>0, ∴OA=﹣1; (2)如图3,设∠MON=n°,S扇形MON=×22=n(cm2), S随n的增大而增大,∠MON取最大值时,S扇形MON最大, 当∠MON取最小值时,S扇形MON最小, 过O点作OK⊥MN于K, ∴∠MON=2∠NOK,MN=2NK, 在Rt△ONK中,sin∠NOK==, ∴∠NOK随NK的增大而增大,∴∠MON随MN的增大而增大, ∴当MN最大时∠MON最大,当MN最小时∠MON最小, ①当N,M,A分别与D,B,O重合时,MN最大,MN=BD, ∠MON=∠BOD=90°,S扇形MON最大=π(cm2), ②当MN=DC=2时,MN最小, ∴ON=MN=OM, ∴∠NOM=60°, S扇形MON最小=π(cm2), ∴π≤S扇形MON≤π. 故答案为:30°.
点评: 此题主要考查了圆的综合应用以及相似三角形的判定与性质和函数增减性等知识,得出扇形MON的面积的最大值与最小值是解题关键.
练习:1. 如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为 ▲ .
2.如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
A. B. C. D.
3.如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=2/3.
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.
4. 如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.
(1)求证:AB为⊙O的切线;
(2)求弦AC的长;
(3)求图中阴影部分的面积.
5.如图,在直角三角形ABC中,∠ABC=90°.
(1)先作∠ACB的平分线;设它交AB边于点O,再以点O为圆心,OB为半径作⊙O(尺规作图,保留作图痕迹,不写作法);
(2)证明:AC是所作⊙O的切线;
(3)若BC=,sinA=,求△AOC的面积.
6.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD
⊥CD
(1)求证:AE平分∠DAC;
(2)若AB=3,∠ABE=60°,
①求AD的长;②求出图中阴影部分的面积。
四:圆与圆的位置关系及其应用
【例15】(2013四川巴中)若⊙O1和⊙O2的圆心距为4,两圆半径分别为r1、r2,且r1、r2是方程组的解,求r1、r2的值,并判断两圆的位置关系.
考点: 圆与圆的位置关系;解二元一次方程组.
分析: 首先由r1、r2是方程组的解,解此方程组即可求得答案;又由⊙O1和⊙O2的圆心距为4,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系.
解答: 解:∵, ①×3﹣②得:11r2=11, 解得:r2=1, 吧r2=1代入①得:r1=4; ∴, ∵⊙O1和⊙O2的圆心距为4, ∴两圆的位置关系为相交.
点评: 此题考查了圆与圆的位置关系与方程组的解法.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.
【例16】如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心,顺次连接
A、O1、B、O2.
(1)求证:四边形AO1BO2是菱形;
(2)过直径AC的端点C作⊙O1的切线CE交AB的延长线于E,连接CO2交AE于D,求证:CE=2O2D;
(3)在(2)的条件下,若△AO2D的面积为1,求△BO2D的面积.
【答案】解:(1)证明:∵⊙O1与⊙O2是等圆,∴AO1=O1B=BO2=O2A。
∴四边形AO1BO2是菱形。
(2)证明:∵四边形AO1BO2是菱形,∴∠O1AB=∠O2AB。
∵CE是⊙O1的切线,AC是⊙O1的直径,∴∠ACE=∠AO2C=90°。
∴△ACE∽△AO2D。∴,即CE=2DO2。
(3)∵四边形AO1BO2是菱形,∴AC∥BO2。∴△ACD∽△BO2D。
∴。∴AD=2BD。
∵S,∴。
【考点】相交两圆的性质,菱形的判定和性质,圆周角定理,相似三角形的判定和性质。
【分析】(1)根据⊙O1与⊙O2是等圆,可得AO1=O1B=BO2=O2A,利用四条边都相等的四边形是菱形可判定出结论。
(2)根据已知得出△ACE∽△AO2D,从而得出,即可得出结论。
(3)首先证明△ACD∽△BO2D,得出 ,AD=2BD,再利用等高不等底的三角形面积关系得出答案即可。
【例17】已知,如图⊙O1与⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点。
(1)求证:AB⊥AC;
(2)若分别为⊙O1、⊙O2的半径,且。求的值。
【例18】已知A为⊙O上一点,B为⊙A与OA的交点,⊙A与⊙O的半径分别为r、
R,且r<R.
(Ⅰ)如图1,过点B作⊙A的切线与⊙O交于M、N两点.
求证:AM·AN=2Rr;
(Ⅱ)如图2,若⊙A与⊙O的交点为E、F,C是弧EBF上任意一点,过点C作⊙A的切线与⊙O交于P、Q两点,试问AP AQ=2Rr是否成立,并证明你的结论.
练习:1.(1)按语句作图并回答:作线段AC(AC=4),以A为圆心a为半径作圆,再以C为圆心b为半径作圆(a<4,b<4,圆A与圆C交于B、D两点),连接AB、BC、CD、DA.
若能作出满足要求的四边形ABCD,则a、b应满足什么条件?
(2)若a=2,b=3,求四边形ABCD的面积.
2.如图,⊙O1、⊙O2相交于P、Q两点,其中⊙O1的半径r1=2,⊙O2的半径r2=.过点Q作CD⊥PQ,分别交⊙O1和⊙O2于点C.D,连接CP、DP,过点Q任作一直线AB交⊙O1和⊙O2于点A.B,连接AP、BP、AC.DB,且AC与DB的延长线交于点E.
(1)求证:;
(2)若PQ=2,试求∠E度数.
3. 如图,⊙O1与⊙O2外切于点C,⊙O1与⊙O2的连心线与外公切线相交于点P,外公切线与两圆的切点分别为A、B,且AC=4,BC=5.
(1)求线段AB的长;(2)证明: .