二次根式全章教案及同步作业练习

文档属性

名称 二次根式全章教案及同步作业练习
格式 zip
文件大小 463.2KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2013-12-11 16:07:36

图片预览

文档简介

二次根式
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).
(3)掌握·=(a≥0,b≥0),=·;
=(a≥0,b>0),=(a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
教学重点
1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
1.1 二次根式
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用(a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如(a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“(a≥0)”解决具体问题.
知识回顾:
1、什么叫做平方根?
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根。
2、什么叫算术平方根
正数的正平方根和零的平方根,统称算术平根。
用表示
很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.
想一想:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0,有意义吗?
例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).
分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.
解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.
例2.当x是多少时,在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.
解:由3x-1≥0,得:x≥
当x≥时,在实数范围内有意义.
例3.当x是多少时,+在实数范围内有意义?
分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥-且x≠-1时,+在实数范围内有意义.
例4(1)已知y=++5,求的值.(答案:2)
(2)若+=0,求a2004+b2004的值.(答案:)
同步练习:
1、判断下列代数式中哪些是二次根式?
(1) (2) (3)
(4) (5)
2、求下列二次根式中字母a的取值范围:
(1) ; (2)
(3) (4)
3、当x分别取下列值时,求二次根式 的值:
(1) x=0 (2) x=2 (3) x=‐1
4、若二次根式的值为3,求x的值.
第一课时作业
一、选择题
1.下列式子中,是二次根式的是( )
A.- B. C. D.x
2.下列式子中,不是二次根式的是( )
A. B. C. D.
3.已知一个正方形的面积是5,那么它的边长是( )
A.5 B. C. D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时,+x2在实数范围内有意义?
3.若+有意义,则=_______.
4.使式子有意义的未知数x有( )个.
A.0 B.1 C.2 D.无数
已知a、b为实数,且+2=b+4,求a、b的值.
1.2 二次根式的性质(1)
教学内容
1.(a≥0)是一个非负数;
2.()2=a(a≥0).
教学目标
理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.
教学重难点关键
1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.
2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).
复习引入
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时,叫什么?当a<0时,有意义吗?
探究新知
议一议: (a≥0)是一个什么数呢?
我们可以得出
(a≥0)是一个非负数.
做一做:根据算术平方根的意义填空:
()2=_______;()2=_______;()2=______;()2=_______;
()2=______;()2=_______;()2=_______.
点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.
同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以
()2=a(a≥0)
例1 计算
1.()2 2.(3)2 3.()2 4.()2
分析:我们可以直接利用()2=a(a≥0)的结论解题.
解:()2 =,(3)2 =32·()2=32·5=45,
()2=,()2=.
巩固练习
计算下列各式的值:
()2 ()2 ()2 ()2 (4)2
应用拓展
例2 计算
1.()2(x≥0) 2.()2 3.()2
4.()2
分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.
所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.
解:(1)因为x≥0,所以x+1>0
()2=x+1
(2)∵a2≥0,∴()2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴=a2+2a+1
(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴()2=4x2-12x+9
例3 在实数范围内分解下列因式:
(1)x2-3 (2)x4-4 (3) 2x2-3
例4 填空:当a≥0时,=_____;当a<0时,=_______,并根据这一性质回答下列问题.
(1)若=a,则a可以是什么数?
(2)若=-a,则a可以是什么数?
(3)>a,则a可以是什么数?
分析:∵=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时,=,那么-a≥0.
(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.
解:(1)因为=a,所以a≥0;
(2)因为=-a,所以a≤0;
(3)因为当a≥0时=a,要使>a,即使a>a所以a不存在;当a<0时,=-a,要使>a,即使-a>a,a<0综上,a<0
例5当x>2,化简-.
第二课时作业
一、选择题
1.下列各式中、、、、、,二次根式的个数是( ).
A.4 B.3 C.2 D.1
2.数a没有算术平方根,则a的取值范围是( ).
A.a>0 B.a≥0 C.a<0 D.a=0
3.的值是( ).
A.0 B. C.4 D.以上都不对
4.a≥0时,、、-,比较它们的结果,下面四个选项中正确的是( ).
A.=≥- B.>>-
C.<<- D.->=
二、填空题
1.(-)2=________.
2.已知有意义,那么是一个_______数.
3.-=________.
4.若是一个正整数,则正整数m的最小值是________.
三、综合提高题
1.计算
(1)()2 (2)-()2 (3)()2 (4)(-3)2
(5)
2.把下列非负数写成一个数的平方的形式:
(1)5 (2)3.4 (3) (4)x(x≥0)
已知+=0,求xy的值.
4.在实数范围内分解下列因式:
x2-2 (2)x4-9 3x2-5
5.先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:
甲的解答为:原式=a+=a+(1-a)=1;
乙的解答为:原式=a+=a+(a-1)=2a-1=17.
两种解答中,_______的解答是错误的,错误的原因是__________.
6.若│1995-a│+=a,求a-19952的值.
7. 若-3≤x≤2时,试化简│x-2│++。
二次根式的运算
二次根式的乘除
教学内容
·=(a≥0,b≥0),反之=·(a≥0,b≥0)及其运用.
=(a≥0,b>0),反过来=(a≥0,b>0)及利用它们进行计算和化简.
教学目标
理解·=(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简
由具体数据,发现规律,导出·=(a≥0,b≥0)并运用它进行计算;利用逆向思维,得出=·(a≥0,b≥0)并运用它进行解题和化简.
理解=(a≥0,b>0)和=(a≥0,b>0)及利用它们进行运算.
利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.
教学重难点关键
重点:1. ·=(a≥0,b≥0),=·(a≥0,b≥0)及它们的运用.
2. 理解=(a≥0,b>0),=(a≥0,b>0)及利用它们进行计算和化简.
3. 最简二次根式的运用.
难点:1. 发现规律,导出·=(a≥0,b≥0).发现规律,归纳出二次根式的除法规定.
关键:要讲清(a<0,b<0)=,如=或==×.
2. 会判断这个二次根式是否是最简二次根式.
复习引入
完成下列各题.
1.填空
(1)×=_______,=______;
(2)×=_______,=________.
(3)=________,=_________;
(4)=________,=________.
参考上面的结果,用“>、<或=”填空.
×_____,×_____,
_______; _______.
2.计算填空
(1)×______,(2)×______,
(3)=______, (4)=________.
探索新知
两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.
一般地,对二次根式的乘除法规定为
·=.(a≥0,b≥0)
=(a≥0,b>0),
反过来: =·(a≥0,b≥0) =(a≥0,b>0)
例1.计算
(1)× (2)× (3) (4)
例2 化简
(1) (2) (3) (4)
(5) (6)
巩固练习
(1)
① × ②3×2 ③·
化简: ; ; ; ;
例3.(1)判断下列各式是否正确,不正确的请予以改正:
(i)
(ii)×=4××=4×=4=8
解:(i)不正确.
改正:==×=2×3=6
(ii)不正确.
改正:×=×====4
(2) 已知,且x为偶数,求(1+x)的值.
分析:式子=,只有a≥0,b>0时才能成立.
因此得到9-x≥0且x-6>0,即6解:由题意得,即
∴6∵x为偶数
∴x=8
∴原式=(1+x)
=(1+x)
=(1+x)=
∴当x=8时,原式的值==6.
(3)观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:
==-1,
==-,
同理可得:=-,……
从计算结果中找出规律,并利用这一规律计算
(+++……)(+1)的值.
分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.
解:原式=(-1+-+-+……+-)×(+1)
=(-1)(+1)
=2002-1=2001
课时作业
一、选择题
1.若直角三角形两条直角边的边长分别为cm和cm,那么此直角三角形斜边长是( ).
A.3cm B.3cm C.9cm D.27cm
2.化简a的结果是( ).
A. B. C.- D.-
3.等式成立的条件是( )
A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1
4.下列各等式成立的是( ).
A.4×2=8 B.5×4=20
C.4×3=7 D.5×4=20
5.计算的结果是( ).
A. B. C. D.
6.阅读下列运算过程:

数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是( ).
A.2 B.6 C. D.
7.如果(y>0)是二次根式,那么,化为最简二次根式是( ).
A.(y>0) B.(y>0) C.(y>0) D.以上都不对
8.把(a-1)中根号外的(a-1)移入根号内得( ).
A. B. C.- D.-
9.在下列各式中,化简正确的是( )
A.=3 B.=±
C.=a2 D. =x
10.化简的结果是( )
A.- B.- C.- D.-
二、填空题
1.=_______.
2.自由落体的公式为S=gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.
3.分母有理化:(1) =_________;(2) =________;(3) =______.
4.已知x=3,y=4,z=5,那么的最后结果是_______.
5.化简=_________.(x≥0)
6.a化简二次根式号后的结果是_________.
三、综合提高题
1.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?
2.探究过程:观察下列各式及其验证过程.
(1)2=
验证:2=×==
==
(2)3=
验证:3=×==
==
同理可得:4
5,……
通过上述探究你能猜测出: a=_______(a>0),并验证你的结论.
3.计算
(1)·(-)÷(m>0,n>0)
(2)-3÷()× (a>0)
4.已知a为实数,化简:-a,阅读下面的解答过程,请判断是否正确?若不正确,请写出正确的解答过程:
解:-a=a-a·=(a-1)
5.若x、y为实数,且y=,求的值.
二次根式的加减
教学内容
二次根式的加减(二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.)
教学目标
理解和掌握二次根式加减的方法.
先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.
重难点关键
1.重点:二次根式化简为最简根式.
2.难点关键:会判定是否是最简二次根式.
例1.计算
(1)+ (2)+
分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.
解:(1)+=2+3=(2+3)=5
(2)+=4+8=(4+8)=12
例2.计算
(1)3-9+3
(2)(4-3)÷2
(3)(+)+(-)
(4)(+)×
(5)(+6)(3-) (6)(+)(-)
例3.已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.
分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.
解:∵4x2+y2-4x-6y+10=0
∵4x2-4x+1+y2-6y+9=0
∴(2x-1)2+(y-3)2=0
∴x=,y=3
原式=+y2-x2+5x
=2x+-x+5
=x+6
当x=,y=3时,
原式=×+6=+3
例4.若最简根式与根式是同类二次根式,求a、b的值.(同类二次根式就是被开方数相同的最简二次根式)
分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;事实上,根式不是最简二次根式,因此把化简成|b|·,才由同类二次根式的定义得3a-b=2,2a-b+6=4a+3b.
解:首先把根式化为最简二次根式:
==|b|·
由题意得

∴a=1,b=1
例5.已知=2-,其中a、b是实数,且a+b≠0,
化简+,并求值.
分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.
解:原式=+
=+
=(x+1)+x-2+x+2
=4x+2
∵=2-
∴b(x-b)=2ab-a(x-a)
∴bx-b2=2ab-ax+a2
∴(a+b)x=a2+2ab+b2
∴(a+b)x=(a+b)2
∵a+b≠0
∴x=a+b
∴原式=4x+2=4(a+b)+2
课时作业
一、选择题
1.以下二次根式:①;②;③;④中,与是同类二次根式的是( ).
A.①和② B.②和③ C.①和④ D.③和④
2.下列各式:①3+3=6;②=1;③+==2;④=2,其中错误的有( ).
A.3个 B.2个 C.1个 D.0个
3.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(结果用最简二次根式)
A.5 B. C.2 D.以上都不对
4.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.(结果同最简二次根式表示)
A.13 B. C.10 D.5
5.(-3+2)×的值是( ).
A.-3 B.3-
C.2- D.-
6.计算(+)(-)的值是( ).
A.2 B.3 C.4 D.1
二、填空题
1.在、、、、、3、-2中,与是同类二次根式的有________.
2.计算二次根式5-3-7+9的最后结果是________.
3.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,鱼塘的宽是_______m.(结果用最简二次根式)
4.已知等腰直角三角形的直角边的边长为,那么这个等腰直角三角形的周长是________.(结果用最简二次根式)
5.(-+)2的计算结果(用最简根式表示)是________.
6.(1-2)(1+2)-(2-1)2的计算结果(用最简二次根式表示)是_______.
7.若x=-1,则x2+2x+1=________.
8.已知a=3+2,b=3-2,则a2b-ab2=_________.
三、综合提高题
1.已知≈2.236,求(-)-(+)的值.(结果精确到0.01)
2.先化简,再求值.
(6x+)-(4x+),其中x=,y=27.
3.若最简二次根式与是同类二次根式,求m、n的值.
4.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=()2,5=()2,你知道是谁的二次根式呢?下面我们观察:
(-1)2=()2-2·1·+12=2-2+1=3-2
反之,3-2=2-2+1=(-1)2
∴3-2=(-1)2
∴=-1
求:(1);
(2);
(3)你会算吗?
(4)若=,则m、n与a、b的关系是什么?并说明理由.
5.化简
6.当x=时,求+的值.(结果用最简二次根式表示)
课外知识
1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.
练习:下列各组二次根式中,是同类二次根式的是( ).
A.与 B.与
C.与 D.与
2.互为有理化因式:互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1-与x+1+就是互为有理化因式;与也是互为有理化因式.
练习:+的有理化因式是________;
x-的有理化因式是_________.
--的有理化因式是_______.
3.分母有理化是指把分母中的根号化去,通常在分子、分母上同乘以一个二次根式,达到化去分母中的根号的目的.
练习:把下列各式的分母有理化
(1); (2); (3); (4).
4.其它材料:如果n是任意正整数,那么=n
理由:==n
练习:填空=_______;=________;=_______.