中小学教育资源及组卷应用平台
专题6.10 图形的初步知识 章末检测
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2021·浙江台州市·中考真题)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是( )
A.两点之间,线段最短 B.垂线段最短 C.三角形两边之和大于第三边 D.两点确定一条直线
【答案】A
【分析】根据线段的性质即可求解.
【详解】解:两地距离显示的是两点之间的线段,因为两点之间线段最短,所以导航的实际可选路线都比两地距离要长,故选:A.
【点睛】本题考查线段的性质,掌握两点之间线段最短是解题的关键.
2.(2022·山东烟台·期中)下列语句中:(1)角平分线是一条直线;(2)若,则是的平分线;(3)两条射线组成的图形叫角;(4)A、B两点之间的距离,就是点A与点B之间线段的长度.其中正确的有( )
A.0个 B.1个 C.2个 D.3个
【答案】B
【分析】根据相关的知识具体判断即可.
【详解】(1)角平分线是一条射线,本语句错误;
(2)若,但这两个角不一定相等,则不一定是的平分线,
本语句错误;(3)有公共顶点的两条射线组成的图形叫角,本语句错误;
(4)A、B两点之间的距离,就是点A与点B之间线段的长度,
本语句正确,共有1个语句正确,故选B.
【点睛】本题考查了角的平分线的属性,角即有公共顶点的两条射线围成的图形,两点间的距离即两点之间线段的长度,熟练掌握各自的定义或性质是解题的关键.
3.(2022·浙江·七年级期末)如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围是( )
A.大于 b B.小于a C.大于b且小于a D.无法确定
【答案】C
【分析】根据垂线段最短即可得到AC的取值范围.
【详解】解:∵AC⊥BC,AD⊥CD,AB=a,CD=b,∴CD<AC<AB,即b<AC<a.故选:C.
【点睛】此题考查了垂线段最短的性质,属于基础题.
4.(2022·浙江·)定义:当点C在线段AB上,时,我们称为点C在线段AB上的点值,记作.
甲同学猜想:点C在线段AB上,若,则.
乙同学猜想:点C是线段AB的三等分点,则
关于甲乙两位同学的猜想,下列说法正确的是( )
A.甲正确,乙不正确 B.甲不正确,乙正确 C.两人都正确 D.两人都不正确
【答案】A
【分析】本题根据题目所给的定义对两人的猜想分别进行验证即可得到答案,对于乙的猜想注意进行分类讨论.
【详解】解:甲同学:点C在线段AB上,且,
,,甲同学正确.
乙同学:点C在线段AB上,且点C是线段AB的三等分点,有两种情况,
①当时,,②当时,,乙同学错误.故选:A.
【点睛】本题主要考查对于新定义和线段的等分点的理解,对于线段的三等分点注意分类讨论即可.
5.(2022·福建宁德·七年级期末)七巧板是中国传统数学文化的重要载体.将一块正方形木板制成如图1所示的一副七巧板,小明选择该副七巧板中的若干块拼成了如图2所示的“帆船”图案,其中已经用上编号为①和③的两块,则拼成该“帆船”图案还需要的木块一定是( )
A.②⑥ B.④⑥⑦ C.⑤⑥⑦ D.④⑤⑥
【答案】A
【分析】根据七巧板拼凑的方法及拼图的线条即可求解.
【详解】解:图2中“帆”的部分由两块大三角形组成,即图1中的①③④,左侧船体是一块小三角形,即③,右侧船体由于帆有一些重合,但根据线条形状不难看出是一个平行四边形,即⑥⑦,所以拼成该“帆船”图案还需要的木块一定是④、⑥和⑦,故选:A.
【点睛】本题考查了七巧板的运用,熟练掌握七巧板的拼凑方法是解题的关键.
6.(2022·江苏·七年级期末)如图,图1是一个三阶金字塔魔方,它是由若干个小三棱锥堆成的一个大三棱锥(图2),把大三棱锥的四个面都涂上颜色.若把其中1个面涂色的小三棱锥叫中心块,2个面涂色的叫棱块,3个面涂色的叫角块,则三阶金字塔魔方中“(棱块数)+(角块数)-(中心块数)”得( )
A.2 B.-2 C.0 D.4
【答案】B
【分析】根据三阶魔方的特征,分别求出棱块数、角块数、中心块数,再计算即可.
【详解】解:如图所示:
∵3个面涂色的小三棱锥为四个顶点处的三棱锥,共4个,∴角块有4个;
∵2个面涂色的小三棱锥为每两个面的连接处,共6个,∴棱块有6个;
∵1个面涂色的小三棱锥为每个面上不与其他面连接的部分,即图中的阴影部分的3个,
∴中心块有:(个);∴(棱块数)+(角块数)(中心块数)=;
故选:B.
【点睛】本题考查了三阶魔方的特征,认识立体图形,图形的规律;解题的关键是正确的认识三阶魔方的特征,从而进行解题.
7.(2022·山东乳山市·期末)将三角尺与直尺按如图所示摆放,下列关于与之间的等量关系正确的是( )
A. B. C. D.
【答案】D
【分析】利用平角性质和余角、补角解得角之间的关系.
【详解】解:∵直尺一边是平角为180°,三角尺的顶角为90°,
∴,∴,故选:D.
【点睛】本题考查了平角性质和余角、补角之间的计算,比较简单,属于基础题型.
8.(2022·江苏·七年级期中)如图,直线上的四个点A,B,C,D分别代表四个小区,其中A小区和B小区相距am,B小区和C小区相距200m,C小区和D小区相距am,某公司的员工在A小区有30人,B小区有5人,C小区有20人,D小区有6人,现公司计划在A,B,C,D四个小区中选一个作为班车停靠点,为使所有员工步行到停靠点的路程总和最小,那么停靠点的位置应设在( )
A.A小区 B.B小区 C.C小区 D.D小区
【答案】B
【分析】根据题意分别计算停靠点分别在B、D、C各点时员工步行的路程和,选择最小的即可求解.
【详解】解:因为当停靠点在A区时,所有员工步行到停靠点路程和是:5a+20×(200+a)+6(2a+200)=37a+5200(m),
因为当停靠点在B区时,所有员工步行到停靠点路程和是:30a+20×200+6(a+200)=36a+5200(m),
当停靠点在C区时,所有员工步行到停靠点路程和是:30(a+200)+5×200+6a=36a+7000(m),
当停靠点在D区时,所有员工步行到停靠点路程和是:30×(2a+200)+5(a+200)+20a=98a+7000(m),
因为36a+5200<37a+5200<36a+7000<98a+7000,
所以当停靠点在B小区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在B区.故选:B.
【点睛】本题主要考查了两点间的距离,理清题意,正确列出算式是解答本题的关键.
9.(2022·四川成都市·成都实外)如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若∠BFE=3∠BFH,∠BFH=20°,则∠GFH的度数是( )
A.85° B.90° C.95° D.100°
【答案】D
【分析】根据折叠求出∠CFG=∠EFG=∠CFE,根据∠BFE=3∠BFH,∠BFH=20°,即可求出∠GFH=∠GFE+∠HFE的度数.
【详解】解:∵将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,使点C落在长方形内部点E处,∴∠CFG=∠EFG=∠CFE,
∵∠BFE=3∠BFH,∠BFH=20°,∴∠BFE=60°,∴∠CFE=120°,∴∠GFE=60°,
∵∠EFH=∠EFB﹣∠BFH,∴∠EFH==40°,∴∠GFH=∠GFE+∠EFH=60°+40°=100°.故选:D.
【点睛】本题考查了角的计算,折叠的性质,角度的倍数关系,主要考查学生的推理和计算能力.
10.(2022·广西钦州·期末)如图,直线与相交于点,一直角三角尺的直角顶点与点重合,平分,现将三角尺以每秒的速度绕点顺时针旋转,同时直线也以每秒的速度绕点顺时针旋转,设运动时间为秒(),当平分时,的值为( )
A. B. C.或 D.或
【答案】D
【分析】分两种情况进行讨论:当转动较小角度的平分时,;当转动较大角度的平分时,;分别依据角的和差关系进行计算即可得到的值.
【解析】解:分两种情况:
①如图平分时,,即,解得;
②如图平分时,,即,解得.
综上所述,当平分时,的值为2.5或32.5.故选:.
【点睛】本题考查角的动态问题,理解题意并分析每个运动状态是解题的关键.
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)
11.(2022·甘肃·七年级期末)王小毛同学做教室卫生时,发现座位很不整齐,他思考了一下,将第一座和最后一座固定之后,沿着第一座最后一座这条线就把座位摆整齐了!他利用了数学原理:_____.
【答案】两点确定一条直线
【分析】由题知,将教室座位看作一个个点,座位整齐否,只需要观察每个点是否在同一条直线即可,根据直线的性质解答.
【详解】王小毛利用的数学原理:两点确定一条直线;故答案为:两点确定一条直线.
【点睛】本题考查直线的性质及定义,难点在于对实际问题数学模型化,寻找对应的原理.
12.(2022·浙江省义乌市稠江中学七年级阶段练习)计算:_________.
【答案】
【分析】度分秒的计算,分别对度、分进行减法运算即可.
【详解】解答:,
故答案为:.
【点睛】本题考查了角度制的计算,熟知角度制的运算法则是解题关键.
13.(2022 河南模拟)如图,直线AB,CD相交于点O,OE⊥AB,∠DOB=34°,则∠COE= 56 °.
【思路点拨】根据垂直定义求出∠AOE的度数,然后根据对顶角相等求出∠AOC的度数,最后得出答案即可.
【答案】解:∵OE⊥AB于O,∴∠AOE=90°,
∵∠DOB=24°,∴∠AOC=∠BOD=34°(对顶角相等).
∴∠COE=∠AOE﹣∠AOC=90°﹣34°=56°,故答案为:56.
【点睛】本题考查了垂线的定义,对顶角相等,先根据垂线的定义求出∠AOC的度数是解题的关键.
14.(2022·河北滦州·七年级期中)如图所示,,点B,O,D在同一直线上,若,则的度数为______.
【答案】116°
【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.
【详解】解:∵,∠AOC=90°,∴∠BOC=64°,
∵∠2+∠BOC=180°,∴∠2=116°.故答案为:116°.
【点睛】此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.
15.(2022·浙江·)已知三点在同一条直线上,且线段,点分别是线段的中点点F是线段的中点,则_______.
【答案】或
【分析】根据中点定义求出BD、BE的长度,然后分①点C在AB的延长线上时,求出DE的长度,再根据中点定义求出EF的长,然后根据BF=BE-EF代入数据进行计算即可得解;②点C在AB的反向延长线上时,求出DE的长度,再根据中点定义求出EF的长,然后根据BF=BE-EF代入数据进行计算即可得解.
【详解】解:、分别是线段、的中点,,,
,,
①如图1,点在的延长线上时,,
点是线段的中点,,此时,;
②如图2,点在的反向延长线上时,,
点是线段的中点,,此时,,
综上所述,或.故答案为:或.
【点睛】本题考查两点间的距离,线段中点的定义,难点在于要分情况讨论,作出图形更形象直观.
16.(2022·浙江杭州市·七年级期中)工作流水线上顺次排列5个工作台A、B、C、D、E,一只工具箱应该放在_________处,工作台上操作机器的人取工具所走的路程最短?如果工作台由5个改为A、B、C、D、E、F,6个,那么工具箱应该放在___________________,操作机器的人取工具所走的路程之和最短?
【答案】C C与D之间
【分析】假设工具箱分别设置在A、B、C、D、E的位置,根据图示求出设置在以上位置时工人经过的总路程,然后进行比较即可;再根据题意及图示,分工具箱的安放位置在A与B之间,在B与C之间,在C与D之间,在D与E之间,在E与F之间进行讨论.
【详解】解:如图,
∵若放在A点,则总路程=AB+AC+AD+AE=AB+2AB+3AB+4AB=10AB;
若放在B点,则总路程=AB+BC+BD+BE=AB+AB+2AB+3AB=7AB;
若放在C点,则总路程=AC+BC+CD+CE=2AB+AB+AB+2AB=6AB;
若放在D点,则总路程=DE+CD+BD+AD=AB+AB+2AB+3AB=7AB;
若放在E点,则总路程=DE+CE+BE+AE=AB+2AB+3AB+4AB=10AB,
∴将工具箱放在C处,才能使工作台上操作机器的人取工具所走的路程最短.
如果工作台由5个改为6个,如图,
位置在A与B之间:拿到工具的距离和>AF+BC+BD+BE;
位置在B与C之间:拿到工具的距离和>AF+BC+CD+CE;
位置在C与D之间:拿到工具的距离和=AF+BE+CD;
位置在D与E之间:拿到工具的距离和>AF+BE+CD;
位置在E与F之间:拿到工具的距离和>AF+BE+CE;
∴将工具箱放在C与D之间,能使6个操作机器的人取工具所走的路程之和最短.
【点睛】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.
17.(2022·浙江·七年级专题练习)如图,点O是钟面的中心,射线正好落在3:00时针的位置.当时钟从2:00走到3:00,则经过___________分钟,时针,分针,与所在的三条射线中,其中一条射线是另外两条射线所夹角的角平分线.
【答案】6或
【分析】分两种情况讨论:当时针为角平分线和OC为角平分线进行计算即可.
【详解】设时针为OB,分针为OA. 当时针为OB为角平分线时,如图1所示:
设经过x分钟,OB为角平分线,则∠AOB=60゜-6x゜+,∠BOC=30゜-,
依题意得:60-6x+=30-解得x=6;
当时针为OC为角平分线时,如图2所示:
设经过x分钟,OC为角平分线,则∠AOC=6x゜-90゜,∠BOC=30゜-,
依题意得:6x-90=30-解得x=;
综合上述可得:经过6分钟或分钟时,时针,分针,与所在的三条射线中,其中一条射线是另外两条射线所夹角的角平分线.故答案为:6或.
【点睛】考查了一元一次方程的应用和角平分线的性质,解题关键是分两种情况讨论:当时针为角平分线和OC为角平分线和利用方程求得其角度.
18.(2022·沙坪坝区·重庆南开中学七年级月考)如图,数轴上有两点,点C从原点O出发,以每秒的速度在线段上运动,点D从点B出发,以每秒的速度在线段上运动.在运动过程中满足,若点M为直线上一点,且,则的值为_______.
【答案】1或
【分析】设点A在数轴上表示的数为a,点B在数轴上表示的数为b,设运动的时间为t秒,由OD=4AC得a与b的关系,再根据点M在直线AB的不同的位置分4种情况进行解答,①若点M在点B的右侧时,②若点M在线段BO上时,③若点M在线段OA上时,④若点M在点A的左侧时,分别表示出AM、BM、OM,由AM-BM=OM得到t、a、b之间的关系,再计算的值即可.
【详解】设运动的时间为t秒,点M表示的数为m
则OC=t,BD=4t,即点C在数轴上表示的数为-t,点D在数轴上表示的数为b-4t,∴AC=-t-a,OD=b-4t,
由OD=4AC得,b-4t=4(-t-a),即:b=-4a,
①若点M在点B的右侧时,如图1所示:
由AM-BM=OM得,m-a-(m-b)=m,即:m=b-a;∴
②若点M在线段BO上时,如图2所示:
由AM-BM=OM得,m-a-(b-m)=m,即:m=a+b;∴
③若点M在线段OA上时,如图3所示:
由AM-BM=OM得,m-a-(b-m)=-m,即:
∵此时m<0,a<0,∴此种情况不符合题意舍去;
④若点M在点A的左侧时,如图4所示:
由AM-BM=OM得,a-m-(b-m)=-m,即:m=b-a=-5a;而m<0,b-a>0,因此,不符合题意舍去,
综上所述,的值为1或.
【点睛】考查数轴表示数的意义,掌握数轴上两点之间距离的计算方法是正确解答的关键,分类讨论和整体代入在解题中起到至关重要的作用.
三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2022·北京房山区·七年级期末)如图,平面上四个点,,,.按要求完成下列问题:
(1)画线段,连接;(2)画直线与射线相交于点;
(3)用量角器度量的大小为________(精确到度).
【答案】(1)答案见详解;(2)答案见详解;(3)31°
【分析】(1)画线段AC、BD即可;(2)画射线DC、直线AB即可,交点记为E;
(3)用量角器测量出的大小即可.
【详解】解:(1)(2)如图所示:
(3)测量可得∠AED=31°.故答案为:31°.
【点睛】本题考查的是射线、直线、线段以及角,关键是掌握射线、直线、线段的性质.
20.(2021·浙江衢州·七年级期末)如图,直线AB与直线CD相交于点O,OE⊥OF,且OA平分∠COE.(1)若∠DOE=50°,求∠BOF的度数.
(2)设∠DOE=α,∠BOF=β,请探究α与β的数量关系(要求写出过程).
【答案】(1)25°;(2)α=2β
【分析】(1)先根据平角的定义得:∠COE=130°,由角平分线的定义和垂线的定义可得∠BOF的度数;
(2)根据(1)中的过程可得结论.
【详解】解:(1)∵∠DOE=50°,∴∠COE=180°-∠DOE=180°-50°=130°,
∵OA平分∠COE,∴∠AOE=∠COE=×130°=65°,
∵OE⊥OF,∴∠EOF=90°,∴∠BOF=180°-∠AOE-∠EOF=180°-65°-90°=25°;
(2)∵∠DOE=α,∴∠COE=180°-∠DOE=180°-α,
∵OA平分∠COE,∴∠AOE=∠COE=(180°-α)=90°-α,
∵OE⊥OF,∴∠EOF=90°,∴∠BOF=β=180°-∠AOE-∠EOF=180°-(90°-α)-90°=α,即α=2β.
【点睛】本题考查了角平分线的定义,以及邻补角的定义,垂线的定义,理解角平分线的定义是关键.
21.(2020·山东枣庄市·中考真题)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数(Vertex)、棱数E(Edge)、面数F(Flat surface)之间存在一定的数量关系,给出了著名的欧拉公式.
(1)观察下列多面体,并把下表补充完整:
名称 三棱锥 三棱柱 正方体 正八面体
图形
顶点数V 4 6 8
棱数E 6 12
面数F 4 5 8
(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:____________________________.
【答案】(1)表格详见解析;(2)
【分析】(1)通过认真观察图象,即可一一判断;(2)从特殊到一般探究规律即可.
【详解】解:(1)填表如下:
名称 三棱锥 三棱柱 正方体 正八面体
图形
顶点数V 4 6 8 6
棱数E 6 9 12 12
面数F 4 5 6 8
(2)据上表中的数据规律发现,多面体的顶点数V、棱数E、面数F之间存在关系式:.
【点睛】本题考查规律型问题,欧拉公式等知识,解题的关键是学会从特殊到一般探究规律的方法,属于中考常考题型.
22.(2022·江苏·南京七年级期末)几何知识可以解决生活中许多距离最短的问题.让我们从书本一道习题入手进行探索.
(回顾)(1)如图①,、是公路两侧的两个村庄.现要在公路上修建一个垃圾站,使它到、两村庄的路程之和最小,请在图中画出点的位置,并说明理由
(探索)(2)如图②,在村庄附件有一个生态保护区,现要在公路上修建一个垃圾站,使它到、两村庄的路程之和最小,从村庄到公路不能穿过生态保护区,请在图中画出点的位置
(3)如图③,、是河两侧的两个村庄,现要在河上修建一座桥,使得桥与河岸垂直,且村到村的总路程最短,请在图中画出桥的位置(保留画图痕迹)
【答案】(1)见解析;(2)见解析;(3)见解析.
【分析】(1)连接AB交直线l于点C,点C即为所求作.(2)根据两点之间线段最短解决问题.
(3)作AA′CD,且AA′=1,连接BA′得到点C,作线段CD⊥河岸即可.
【详解】(1)如图,点C即为所求作.理由:两点之间,线段最短.
(2)如图,点C即为所求作.
(3)如图,线段CD可即为所求作.
【点睛】本题考查作图 应用与设计作图,垂线段最短,两点之间线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
23.(2022·广东光明区·)定义:数轴上的三点,如果其中一个点与近点距离是它与远点距离的,则称该点是其他两个点的“倍分点”.例如数轴上点A,B,C所表示的数分别为﹣1,0,2,满足AB=BC,此时点B是点A,C的“倍分点”.已知点A,B,C,M,N在数轴上所表示的数如图所示.
(1)A,B,C三点中,点 是点M,N的“倍分点”;
(2)若数轴上点M是点D,A的“倍分点”,则点D对应的数有 个,分别是 ;
(3)若数轴上点N是点P,M的“倍分点”,且点P在点N的右侧,求此时点P表示的数.
【答案】(1)B;(2)4;﹣2,﹣4,1,﹣7;(3)或24
【分析】(1)利用“倍分点”的定义即可求得答案;
(2)设D点坐标为x,利用“倍分点”的定义,分两种情况讨论即可求出答案;
(3)利用“倍分点”的定义,结合点P在点N的右侧,分两种情况讨论即可求出答案.
【详解】解:(1)∵BM=0-(-3)=3,BN=6-0=6,∴BM=BN,∴点B是点M,N的“倍分点”;
(2)AM=-1-(-3)=2,设D点坐标为x,
①当DM=AM时,DM=1,∴|x-(-3)|=1,解得:x=-2或-4,
②当AM=DM时,DM=2AM=4,∴|x-(-3)|=4,解得:x=1或-7,
综上所述,则点D对应的数有4个,分别是-2,-4,1,-7,故答案为:4;-2,-4,1,-7;
(3)MN=6-(-3)=9,当PN=MN时,PN=×9=,∵点P在点N的右侧,∴此时点P表示的数为,
当MN=PN时,PN=2MN=2×9=18,∵点P在点N的右侧,∴此时点P表示的数为24,
综上所述,点P表示的数为或24.
【点睛】本题考查了数轴结合新定义“倍分点”,正确理解“倍分点”的含义是解决问题的关键.
24.(2022·辽宁西丰县·七年级期末)利用折纸可以作出角平分线.
(1)如图1,若∠AOB=58°,则∠BOC= .
(2)折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A′,点B落在点B',连接OA'.
①如图2,当点B'在OA'上时,判断∠AOC与∠BOD的关系,并说明理由;
②如图3,当点B'在∠COA'的内部时,连接OB',若∠AOC=44°,∠BOD=61°,求∠A'OB'的度数.
【答案】(1)29°;(2)①∠AOC+∠BOD=90°,理由见解析;②30°
【分析】(1)由折叠得出∠AOC=∠BOC,即可得出结论;(2)①由折叠得出∠AOA'=2∠AOC,∠BOB'=2∠BOD,再由点B'落在OA'上,得出∠AOA'+∠BOB'=180°,即可得出结论;
②同①的方法求出∠AOA'=88°,∠BOB'=122°,即可得出结论.
【详解】解:(1)由折叠知,∠AOC=∠BOC=∠AOB,
∵∠AOB=58°,∴∠BOC=∠AOB=×58°=29°,故答案为:29°;
(2)①∠AOC+∠BOD=90°,
理由:由折叠知,∠AOC=∠A'OC,∴∠AOA'=2∠AOC,
由折叠知,∠BOD=∠B'OD,∴∠BOB'=2∠BOD,
∵点B'落在OA',∴∠AOA'+∠BOB'=180°,∴2∠AOC+2∠BOD=180°,∴∠AOC+∠BOD=90°;
②由折叠知,∠AOA'=2∠AOC,∠BOB'=2∠BOD,
∵∠AOC=44°,∠BOD=61°,∴∠AOA'=2∠AOC=2×44°=88°,∠BOB'=2∠BOD=2×61°=122°,
∴∠A'OB'=∠AOA'+∠BOB'﹣180°=88°+122°﹣180°=30°,即∠A'OB'的度数为30°.
【点睛】此题主要考查了折叠的性质,平角的定义,角的和差的计算,从图形中找出角之间的关系是解本题的关键.
25.(2022·成都市七中育才学校七年级期末)如图1,在表盘上12:00时,时针、分针都指向数字12,我们将这一位置称为“标准位置”(图中).小文同学为研究12点分()时,时针与分针的指针位置,将时针记为,分针记为.如:12:30时,时针、分针的位置如图2所示,试解决下列问题:
(1)分针每分钟转动 °;时针每分钟转动 °;
(2)当与在同一直线上时,求的值; (3)当、、两两所夹的三个角、、中有两个角相等时,试求出所有符合条件的的值.(本小题中所有角的度数均不超过180°)
【答案】(1)6,0.5;(2)的值为;(3)的值为或
【分析】(1)由题意根据分针每60分钟转动一圈,时针每12小时转动一圈进行分析计算;
(2)由题意与在同一直线上即与所围成的角为180°,据此进行分析计算;
(3)根据题意分当时以及当时两种情况进行分析求解.
【详解】解:(1)由题意得分针每分钟转动:;
时针每分钟转动:.故答案为:6,0.5.
(2)当与在同一直线上时,时针转了度,即
分针转了度,即 ∴ 解得, ∴的值为.
(3)①当时, ∵ ∴∴;
②当时,∵
∴∴;∴综上所述,符合条件的的值为或.
【点睛】本题考查钟表角的实际应用,根据题意熟练掌握并运用方程思维进行分析是解答此题的关键.
26.(2022·杭州市七年级月考)已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧,
(1)若AB=18,DE=8,线段DE在线段AB上移动,
①如图1,当E为BC中点时,求AD的长;②当点C是线段DE的三等分点时,求AD的长;
(2)若AB=2DE,线段DE在直线上移动,且满足关系式,则= .
【答案】(1)①AD=7;②AD=或;(2)或
【分析】(1)根据已知条件得到BC=6,AC=12,①由线段中点的定义得到CE=3,求得CD=5,由线段的和差得到AD=AC﹣CD=12﹣5=7;②当点C线段DE的三等分点时,可求得CE=DE=或CE=DE=,则CD=或,由线段的和差即可得到结论;(2)当点E在线段BC之间时,,设BC=x,则AC=2BC=2x,求得AB=3x,设CE=y,得到AE=2x+y,BE=x﹣y,求得y=x,当点E在点A的左侧,设BC=x,则DE=1.5x,设CE=y,求得DC=EC+DE=y+1.5x,得到y=4x,于是得到结论.
【详解】解:(1)∵AC=2BC,AB=18,∴BC=6,AC=12,
①∵E为BC中点,∴CE=3,∵DE=8,∴CD=5,∴AD=AC﹣CD=12﹣5=7;
②∵点C是线段DE的三等分点,DE=8,∴CE=DE=或CE=DE=,∴CD=或CD=,
∴AD=AC﹣CD=12﹣=或12-=;
(2)当点E在线段BC之间时,如图,设BC=x,则AC=2BC=2x,∴AB=3x,
∵AB=2DE,∴DE=1.5x,设CE=y,∴AE=2x+y,BE=x﹣y,∴AD=AE﹣DE=2x+y﹣1.5x=0.5x+y,
∵,∴,∴y=x,∴CD=1.5x﹣x=x,∴;
当点E在点A的左侧,如图,
设BC=x,则DE=1.5x,设CE=y,∴DC=EC+DE=y+1.5x,∴AD=DC﹣AC=y+1.5x﹣2x=y﹣0.5x,
∵,BE=EC+BC=x+y,∴,∴y=4x,
∴CD=y+1.5x=4x+1.5x=5.5x,BD=DC+BC=y+1.5x+x=6.5x,
∴AB=BD﹣AD=6.5x﹣y+0.5x=6.5x﹣4x+0.5x=3x,∴,
当点E在线段AC上及点E在点B右侧时,无解,综上所述的值为或.故答案为:或.
【点睛】本题考查了两点间的距离,利用了线段中点的性质、线段的和差、准确识图分类讨论DE的位置是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题6.10 图形的初步知识 章末检测
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2021·浙江台州市·中考真题)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是( )
A.两点之间,线段最短 B.垂线段最短 C.三角形两边之和大于第三边 D.两点确定一条直线
2.(2022·山东烟台·期中)下列语句中:(1)角平分线是一条直线;(2)若,则是的平分线;(3)两条射线组成的图形叫角;(4)A、B两点之间的距离,就是点A与点B之间线段的长度.其中正确的有( )
A.0个 B.1个 C.2个 D.3个
3.(2022·浙江·七年级期末)如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围是( )
A.大于 b B.小于a C.大于b且小于a D.无法确定
4.(2022·浙江·)定义:当点C在线段AB上,时,我们称为点C在线段AB上的点值,记作.
甲同学猜想:点C在线段AB上,若,则.
乙同学猜想:点C是线段AB的三等分点,则
关于甲乙两位同学的猜想,下列说法正确的是( )
A.甲正确,乙不正确 B.甲不正确,乙正确 C.两人都正确 D.两人都不正确
5.(2022·福建宁德·七年级期末)七巧板是中国传统数学文化的重要载体.将一块正方形木板制成如图1所示的一副七巧板,小明选择该副七巧板中的若干块拼成了如图2所示的“帆船”图案,其中已经用上编号为①和③的两块,则拼成该“帆船”图案还需要的木块一定是( )
A.②⑥ B.④⑥⑦ C.⑤⑥⑦ D.④⑤⑥
6.(2022·江苏·七年级期末)如图,图1是一个三阶金字塔魔方,它是由若干个小三棱锥堆成的一个大三棱锥(图2),把大三棱锥的四个面都涂上颜色.若把其中1个面涂色的小三棱锥叫中心块,2个面涂色的叫棱块,3个面涂色的叫角块,则三阶金字塔魔方中“(棱块数)+(角块数)-(中心块数)”得( )
A.2 B.-2 C.0 D.4
7.(2022·山东乳山市·期末)将三角尺与直尺按如图所示摆放,下列关于与之间的等量关系正确的是( )
A. B. C. D.
8.(2022·江苏·七年级期中)如图,直线上的四个点A,B,C,D分别代表四个小区,其中A小区和B小区相距am,B小区和C小区相距200m,C小区和D小区相距am,某公司的员工在A小区有30人,B小区有5人,C小区有20人,D小区有6人,现公司计划在A,B,C,D四个小区中选一个作为班车停靠点,为使所有员工步行到停靠点的路程总和最小,那么停靠点的位置应设在( )
A.A小区 B.B小区 C.C小区 D.D小区
9.(2022·四川成都市·成都实外)如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若∠BFE=3∠BFH,∠BFH=20°,则∠GFH的度数是( )
A.85° B.90° C.95° D.100°
10.(2022·广西钦州·期末)如图,直线与相交于点,一直角三角尺的直角顶点与点重合,平分,现将三角尺以每秒的速度绕点顺时针旋转,同时直线也以每秒的速度绕点顺时针旋转,设运动时间为秒(),当平分时,的值为( )
A. B. C.或 D.或
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)
11.(2022·甘肃·七年级期末)王小毛同学做教室卫生时,发现座位很不整齐,他思考了一下,将第一座和最后一座固定之后,沿着第一座最后一座这条线就把座位摆整齐了!他利用了数学原理:_____.
12.(2022·浙江省义乌市稠江中学七年级阶段练习)计算:_________.
13.(2022 河南模拟)如图,直线AB,CD相交于点O,OE⊥AB,∠DOB=34°,则∠COE= °.
14.(2022·河北滦州·七年级期中)如图所示,,点B,O,D在同一直线上,若,则的度数为______.
15.(2022·浙江·)已知三点在同一条直线上,且线段,点分别是线段的中点点F是线段的中点,则_______.
16.(2022·浙江杭州市·七年级期中)工作流水线上顺次排列5个工作台A、B、C、D、E,一只工具箱应该放在_________处,工作台上操作机器的人取工具所走的路程最短?如果工作台由5个改为A、B、C、D、E、F,6个,那么工具箱应该放在___________________,操作机器的人取工具所走的路程之和最短?
17.(2022·浙江·七年级专题练习)如图,点O是钟面的中心,射线正好落在3:00时针的位置.当时钟从2:00走到3:00,则经过___________分钟,时针,分针,与所在的三条射线中,其中一条射线是另外两条射线所夹角的角平分线.
18.(2022·沙坪坝区·重庆南开中学七年级月考)如图,数轴上有两点,点C从原点O出发,以每秒的速度在线段上运动,点D从点B出发,以每秒的速度在线段上运动.在运动过程中满足,若点M为直线上一点,且,则的值为_______.
三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2022·北京房山区·七年级期末)如图,平面上四个点,,,.按要求完成下列问题:
(1)画线段,连接;(2)画直线与射线相交于点;
(3)用量角器度量的大小为________(精确到度).
20.(2021·浙江衢州·七年级期末)如图,直线AB与直线CD相交于点O,OE⊥OF,且OA平分∠COE.(1)若∠DOE=50°,求∠BOF的度数.(2)设∠DOE=α,∠BOF=β,请探究α与β的数量关系(要求写出过程).
21.(2020·山东枣庄市·中考真题)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数(Vertex)、棱数E(Edge)、面数F(Flat surface)之间存在一定的数量关系,给出了著名的欧拉公式.
(1)观察下列多面体,并把下表补充完整:
名称 三棱锥 三棱柱 正方体 正八面体
图形
顶点数V 4 6 8
棱数E 6 12
面数F 4 5 8
(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:______________.
22.(2022·江苏·南京七年级期末)几何知识可以解决生活中许多距离最短的问题.让我们从书本一道习题入手进行探索.
(回顾)(1)如图①,、是公路两侧的两个村庄.现要在公路上修建一个垃圾站,使它到、两村庄的路程之和最小,请在图中画出点的位置,并说明理由
(探索)(2)如图②,在村庄附件有一个生态保护区,现要在公路上修建一个垃圾站,使它到、两村庄的路程之和最小,从村庄到公路不能穿过生态保护区,请在图中画出点的位置
(3)如图③,、是河两侧的两个村庄,现要在河上修建一座桥,使得桥与河岸垂直,且村到村的总路程最短,请在图中画出桥的位置(保留画图痕迹)
23.(2022·广东光明区·)定义:数轴上的三点,如果其中一个点与近点距离是它与远点距离的,则称该点是其他两个点的“倍分点”.例如数轴上点A,B,C所表示的数分别为﹣1,0,2,满足AB=BC,此时点B是点A,C的“倍分点”.已知点A,B,C,M,N在数轴上所表示的数如图所示.
(1)A,B,C三点中,点 是点M,N的“倍分点”;
(2)若数轴上点M是点D,A的“倍分点”,则点D对应的数有 个,分别是 ;
(3)若数轴上点N是点P,M的“倍分点”,且点P在点N的右侧,求此时点P表示的数.
24.(2022·辽宁西丰县·七年级期末)利用折纸可以作出角平分线.
(1)如图1,若∠AOB=58°,则∠BOC= .
(2)折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A′,点B落在点B',连接OA'.
①如图2,当点B'在OA'上时,判断∠AOC与∠BOD的关系,并说明理由;
②如图3,当点B'在∠COA'的内部时,连接OB',若∠AOC=44°,∠BOD=61°,求∠A'OB'的度数.
25.(2022·成都市七中育才学校七年级期末)如图1,在表盘上12:00时,时针、分针都指向数字12,我们将这一位置称为“标准位置”(图中).小文同学为研究12点分()时,时针与分针的指针位置,将时针记为,分针记为.如:12:30时,时针、分针的位置如图2所示,试解决下列问题:
(1)分针每分钟转动 °;时针每分钟转动 °;
(2)当与在同一直线上时,求的值; (3)当、、两两所夹的三个角、、中有两个角相等时,试求出所有符合条件的的值.(本小题中所有角的度数均不超过180°)
26.(2022·杭州市七年级月考)已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧,
(1)若AB=18,DE=8,线段DE在线段AB上移动,
①如图1,当E为BC中点时,求AD的长;②当点C是线段DE的三等分点时,求AD的长;
(2)若AB=2DE,线段DE在直线上移动,且满足关系式,则= .
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)